CORD-19-PD-HP | | PubDictionaries annotation for HP terms - updated at 2020-04-30
Disease term annotation based on HP.
Version 2020-04-20.
The terms in HP are loaded in PubDictionaries, with which the annotations in this project are produced. The parameter configuration used for this project is here.
Note that it is an automatically generated dictionary-based annotation. It will be updated periodically, as the documents are increased, and the dictionary is improved. | 1.15 M | | Jin-Dong Kim | 2023-11-29 | Released | |
bionlp-st-ge-2016-spacy-parsed | | Dependency parses produced by spaCy parser, and part-of-speech tags produced by Stanford tagger (with the wsj-0-18-left3words-nodistsim model). The exact procedure is described here. Data set contains the 34 full paper articles used in the BioNLP 2016 GE task.
| 225 K | Nico Colic | Nico Colic | 2023-11-29 | Released | |
bionlp-st-2016-SeeDev-dev | | Entities and event annotations from the development set of the BioNLP-ST 2016 SeeDev task.
SeeDev task focuses on seed storage and reserve accumulation on the model organism, Arabidopsis thaliana. The SeeDev task is based on the knowledge model Gene Regulation Network for Arabidopsis (GRNA) that meets the needs of text-mining (i.e. manual annotation of texts and automatic information extraction), experimental data indexing and retrieval and reuse in other plant systems. It is also expected to meet the requirements of the integration of the text knowledge with knowledge derived from experimental data in view of modeling in systems biology.
GRNA model defines 16 different types of entities, and 22 types of event (in five sets of event types) that may be combined in complex events.
For more information, please refer to the task website
All annotations :
Train set
Development set
Test set (without events)
| 61 | | EstelleChaix | 2023-11-29 | Released | |
bionlp-st-2016-SeeDev-test | | Entities annotations from the test set of the BioNLP-ST 2016 SeeDev task.
SeeDev task focuses on seed storage and reserve accumulation on the model organism, Arabidopsis thaliana. The SeeDev task is based on the knowledge model Gene Regulation Network for Arabidopsis (GRNA) that meets the needs of text-mining (i.e. manual annotation of texts and automatic information extraction), experimental data indexing and retrieval and reuse in other plant systems. It is also expected to meet the requirements of the integration of the text knowledge with knowledge derived from experimental data in view of modeling in systems biology.
GRNA model defines 16 different types of entities, and 22 types of event (in five sets of event types) that may be combined in complex events.
For more information, please refer to the task website
All annotations :
Train set
Development set
Test set (without events)
| 184 | | EstelleChaix | 2023-11-29 | Released | |
bionlp-st-epi-2011-training | | The training dataset from the Epigenetics and Post-translational Modifications (EPI) task in the BioNLP Shared Task 2011.
The core entities of the task are genes and gene products (RNA and proteins), identified in the data simply as "Protein" annotations. | 7.59 K | GENIA | Yue Wang | 2023-11-29 | Released | |
bionlp-st-ge-2016-reference | | It is the benchmark reference data set of the BioNLP-ST 2016 GE task.
It includes Genia-style event annotations to 20 full paper articles which are about NFκB proteins.
The task is to develop an automatic annotation system which can produce annotation similar to the annotation in this data set as much as possible.
For evaluation of the performance of a participating system, the system needs to produce annotations to the documents in the benchmark test data set (bionlp-st-ge-2016-test).
GE 2016 benchmark data set is provided as multi-layer annotations which include:
bionlp-st-ge-2016-reference: benchmark reference data set (this project)
bionlp-st-ge-2016-test: benchmark test data set (annotations are blined)
bionlp-st-ge-2016-test-proteins: protein annotation to the benchmark test data set
Following is supporting resources:
bionlp-st-ge-2016-coref: coreference annotation
bionlp-st-ge-2016-uniprot: Protein annotation with UniProt IDs.
pmc-enju-pas: dependency parsing result produced by Enju
UBERON-AE: annotation for anatomical entities as defined in UBERON
ICD10: annotation for disease names as defined in ICD10
GO-BP: annotation for biological process names as defined in GO
GO-CC: annotation for cellular component names as defined in GO
A SPARQL-driven search interface is provided at http://bionlp.dbcls.jp/sparql. | 14.4 K | DBCLS | Jin-Dong Kim | 2023-11-29 | Released | |
TEST-DiseaseOrPhenotypicFeature | | Annotated by Mesh_All_FN | 795 | | Eisuke Dohi | 2023-11-29 | Released | |
Wangshuguang | | HZAU_bioinformatics_competition | 603 | wangshuguang | wangshuguang | 2023-11-29 | Released | |
PIR-corpus2 | | The protein tag was used to tag proteins, or protein-associated or -related objects, such as domains, pathways, expression of gene.
Annotation guideline: http://pir.georgetown.edu/pirwww/about/doc/manietal.pdf | 5.52 K | University of Delaware and Georgetown University Medical Center | Yue Wang | 2023-11-29 | Released | |
RDoCTask1SampleData | | Each annotation file contains an annotated abstract with an RDoC category. Each title span in these sample data is annotated with the corresponding related RDoC construct, although the RDoC category would apply for the entire abstract. The annotation data are formatted as json files. Please refer to the following page for a more detailed description of the json format http://www.pubannotation.org/docs/annotation-format/. | 20 | | mmanani1s | 2023-11-29 | Released | |
RDoCTask2SampleData | | Each annotation file contains an annotated abstract with the most relevant sentence. The relevant sentence is annotated with the RDoC category name. The annotation data are formatted as json files. Please refer to the following page for a more detailed description of the json format http://www.pubannotation.org/docs/annotation-format/.
| 10 | | mmanani1s | 2023-11-29 | Released | |
LitCovid-PD-HP-v1 | | PubDictionaries annotation for human phenotype terms - updated at 2020-04-20
Disease term annotation based on HP.
Version 2020-04-20.
The terms in HP are loaded in PubDictionaries, with which the annotations in this project are produced. The parameter configuration used for this project is here.
Note that it is an automatically generated dictionary-based annotation. It will be updated periodically, as the documents are increased, and the dictionary is improved. | 3.03 K | | Jin-Dong Kim | 2023-11-29 | Released | |
LitCovid-PD-MONDO-v1 | | PubDictionaries annotation for disease terms - updated at 2020-04-20
It is based on MONDO Version 2020-04-20.
The terms in MONDO are loaded in PubDictionaries, with which the annotations in this project are produced. The parameter configuration used for this project is here.
Note that it is an automatically generated dictionary-based annotation. It will be updated periodically, as the documents are increased, and the dictionary is improved. | 13.4 K | | Jin-Dong Kim | 2023-11-29 | Released | |
LitCovid-docs-s | | | 0 | | Jin-Dong Kim | 2023-11-29 | Released | |
LitCovid-v1-docs | | A comprehensive literature resource on the subject of Covid-19 is collected by NCBI:
https://www.ncbi.nlm.nih.gov/research/coronavirus/
The LitCovid project@PubAnnotation is a collection of the titles and abstracts of the LitCovid dataset, for the people who want to perform text mining analysis. Please note that if you produce some annotation to the documents in this project, and contribute the annotation back to PubAnnotation, it will become publicly available together with contribution from other people.
If you want to contribute your annotation to PubAnnotation, please refer to the documentation page:
http://www.pubannotation.org/docs/submit-annotation/
The list of the PMID is sourced from here
The 6 entries of the following PMIDs could not be included because they were not available from PubMed:32161394,
32104909,
32090470,
32076224,
32161394
32188956,
32238946.
Below is a notice from the original LitCovid dataset:
PUBLIC DOMAIN NOTICE
National Center for Biotechnology Information
This software/database is a "United States Government Work" under the
terms of the United States Copyright Act. It was written as part of
the author's official duties as a United States Government employee and
thus cannot be copyrighted. This software/database is freely available
to the public for use. The National Library of Medicine and the U.S.
Government have not placed any restriction on its use or reproduction.
Although all reasonable efforts have been taken to ensure the accuracy
and reliability of the software and data, the NLM and the U.S.
Government do not and cannot warrant the performance or results that
may be obtained by using this software or data. The NLM and the U.S.
Government disclaim all warranties, express or implied, including
warranties of performance, merchantability or fitness for any particular
purpose.
Please cite the authors in any work or product based on this material :
Chen Q, Allot A, & Lu Z. (2020) Keep up with the latest coronavirus research, Nature 579:193
| 0 | | Jin-Dong Kim | 2023-11-29 | Released | |
LocText | | The manually annotated corpus consists of 100 PubMed abstracts annotated for proteins, subcellular localizations, organisms and relations between them. The focus of the corpus is on annotation of proteins and their subcellular localizations. | 2.29 K | Goldberg et al | Shrikant Vinchurkar | 2023-11-29 | Released | |
GlyCosmos600-docs | | A random collection of 600 PubMed abstracts from 6 glycobiology-related journals: Glycobiology, Glycoconjugate journal, The Journal of biological chemistry, Journal of proteome research, Journal of proteomics, and Carbohydrate research. The whole PMIDs were collected on June 11, 2019. From each journal, 100 PMIDs were randomly sampled. | 0 | | Jin-Dong Kim | 2023-11-29 | Released | |
GENIAcorpus | | multi_cell (1,782)
mono_cell (222)
virus (2,136)
protein_family_or_group (8,002)
protein_complex (2,394)
protein_molecule (21,290)
protein_subunit (942)
protein_substructure (129)
protein_domain_or_region (1,044)
protein_other (97)
peptide (521)
amino_acid_monomer (784)
DNA_family_or_group (332)
DNA_molecule (664)
DNA_substructure (2)
DNA_domain_or_region (39)
DNA_other (16)
RNA_family_or_group (1,545)
RNA_molecule (554)
RNA_substructure (106)
RNA_domain_or_region (8,237)
RNA_other (48)
polynucleotide (259)
nucleotide (243)
lipid (2,375)
carbohydrate (99)
other_organic_compound (4,113)
body_part (461)
tissue (706)
cell_type (7,473)
cell_component (679)
cell_line (4,129)
other_artificial_source (211)
inorganic (258)
atom (342)
other (21,056)
| 78.9 K | GENIA Project | Yue Wang | 2023-11-29 | Released | |
AnEM_abstracts | | 250 documents selected randomly from citation abstracts
Entity types: organism subdivision, anatomical system, organ, multi-tissue structure, tissue, cell, developing anatomical structure, cellular component, organism substance, immaterial anatomical entity and pathological formation
Together with AnEM_full-texts, it is probably the largest manually annotated corpus on anatomical entities. | 1.91 K | NaCTeM | Yue Wang | 2023-11-29 | Released | |
BioLarkPubmedHPO | | 228 abstracts manually annotated with Human Phenotype Ontology (HPO) concepts and harmonized by three curators, which can be used as a reference standard for free text annotation of human phenotypes. For more info, please see Groza et al. "Automatic concept recognition using the human phenotype ontology reference and test suite corpora", 2015. | 7.16 K | Tudor Groza | simon | 2023-11-29 | Released | |