CyanoBase | | Cyanobacteria are prokaryotic organisms that have served as important model organisms for studying oxygenic photosynthesis and have played a significant role in the Earthfs history as primary producers of atmospheric oxygen.
Publication: http://www.aclweb.org/anthology/W12-2430 | 1.1 K | Kazusa DNA Research Institute and Database Center for Life Science (DBCLS) | Yue Wang | 2016-05-17 | Released | |
FSU-PRGE | | A new broad-coverage corpus composed of 3,306 MEDLINE abstracts dealing with gene and protein mentions.
The annotation process was semi-automatic.
Publication: http://aclweb.org/anthology/W/W10/W10-1838.pdf | 59.5 K | CALBC Project | Yue Wang | 2017-03-08 | Released | |
SCAI-Test | | A small corpus for the evaluation of dictionaries containing chemical entities.
Publication: http://www.scai.fraunhofer.de/fileadmin/images/bio/data_mining/paper/kolarik2008.pdf
Original source: https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads/corpora-for-chemical-entity-recognition.html | 1.21 K | CALBC Project | Yue Wang | 2017-04-03 | Released | |
Virus300 | | 300 abstracts from virology journals annotated with viral proteins and species | 0 | http://aclweb.org/anthology/W/W17/W17-2311.pdf | helencook | 2017-08-07 | Released | |
bionlp-st-pc-2013-training | | The training dataset from the pathway curation (PC) task in the BioNLP Shared Task 2013.
The entity types defined in the PC task are simple chemical, gene or gene product, complex and cellular component. | 7.86 K | NaCTeM and KISTI | Yue Wang | 2017-08-28 | Released | |
Wangshuguang | | HZAU_bioinformatics_competition | 603 | wangshuguang | wangshuguang | 2018-04-03 | Released | |
RDoCTask2SampleData | | Each annotation file contains an annotated abstract with the most relevant sentence. The relevant sentence is annotated with the RDoC category name. The annotation data are formatted as json files. Please refer to the following page for a more detailed description of the json format http://www.pubannotation.org/docs/annotation-format/.
| 10 | | mmanani1s | 2019-03-25 | Released | |
RDoCTask1SampleData | | Each annotation file contains an annotated abstract with an RDoC category. Each title span in these sample data is annotated with the corresponding related RDoC construct, although the RDoC category would apply for the entire abstract. The annotation data are formatted as json files. Please refer to the following page for a more detailed description of the json format http://www.pubannotation.org/docs/annotation-format/. | 20 | | mmanani1s | 2019-03-25 | Released | |
123123123 | | 123123123 | 150 | | yaoxinzhi | 2019-04-12 | Released | |
GlyCosmos600-docs | | A random collection of 600 PubMed abstracts from 6 glycobiology-related journals: Glycobiology, Glycoconjugate journal, The Journal of biological chemistry, Journal of proteome research, Journal of proteomics, and Carbohydrate research. The whole PMIDs were collected on June 11, 2019. From each journal, 100 PMIDs were randomly sampled. | 0 | | Jin-Dong Kim | 2019-06-11 | Released | |
tmVarCorpus | | Wei C-H, Harris BR, Kao H-Y, Lu Z (2013) tmVar: A text mining approach for extracting sequence variants in biomedical literature, Bioinformatics, 29(11) 1433-1439, doi:10.1093/bioinformatics/btt156. | 1.43 K | Chih-Hsuan Wei , Bethany R. Harris , Hung-Yu Kao and Zhiyong Lu | Chih-Hsuan Wei | 2020-01-31 | Released | |
CoMAGC | | In order to access the large amount of information in biomedical literature about genes implicated in various cancers both efficiently and accurately, the aid of text mining (TM) systems is invaluable. Current TM systems do target either gene-cancer relations or biological processes involving genes and cancers, but the former type produces information not comprehensive enough to explain how a gene affects a cancer, and the latter does not provide a concise summary of gene-cancer relations. In order to support the development of TM systems that are specifically targeting gene-cancer relations but are still able to capture complex information in biomedical sentences, we publish CoMAGC, a corpus with multi- faceted annotations of gene-cancer relations. In CoMAGC, a piece of annotation is composed of four semantically orthogonal concepts that together express 1) how a gene changes, 2) how a cancer changes and 3) the causality between the gene and the cancer. The multi-faceted annotations are shown to have high inter-annotator agreement. In addition, the annotations in CoMAGC allow us to infer the prospective roles of genes in cancers and to classify the genes into three classes according to the inferred roles. We encode the mapping between multi-faceted annotations and gene classes into 10 inference rules. The inference rules produce results with high accuracy as measured against human annotations. CoMAGC consists of 821 sentences on prostate, breast and ovarian cancers. Currently, the corpus deals with changes in gene expression levels among other types of gene changes. | 1.53 K | Lee et al | Hee-Jin Lee | 2020-02-01 | Released | |
PIR-corpus1 | | The Protein Information Resource (PIR) is not biased towards any particular biomedical domain, and is expected to provide more diverse protein names in a given sample size.
Annotation category: protein, compound-protein, acronym. | 4.44 K | University of Delaware and Georgetown University Medical Center | Yue Wang | 2020-02-01 | Released | |
LocText | | The manually annotated corpus consists of 100 PubMed abstracts annotated for proteins, subcellular localizations, organisms and relations between them. The focus of the corpus is on annotation of proteins and their subcellular localizations. | 2.29 K | Goldberg et al | Shrikant Vinchurkar | 2020-02-01 | Released | |
PIR-corpus2 | | The protein tag was used to tag proteins, or protein-associated or -related objects, such as domains, pathways, expression of gene.
Annotation guideline: http://pir.georgetown.edu/pirwww/about/doc/manietal.pdf | 5.52 K | University of Delaware and Georgetown University Medical Center | Yue Wang | 2020-02-01 | Released | |
DisGeNET5_variant_disease | | The file contains variant-disease associations obtained by text mining MEDLINE abstracts using the BeFree system, including the variant and disease off sets. | 144 K | IBI Group | Yue Wang | 2020-02-01 | Released | |
SPECIES800 | | SPECIES 800 (S800): an abstract-based manually annotated corpus. S800 comprises 800 PubMed abstracts in which organism mentions were identified and mapped to the corresponding NCBI Taxonomy identifiers.
Described in:
The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text.
Pafilis E, Frankild SP, Fanini L, Faulwetter S, Pavloudi C, et al. (2013). PLoS ONE, 2013, 8(6): e65390. doi:10.1371/journal.pone.0065390 | 3.71 K | Evangelos Pafilis, Sune P. Frankild, Lucia Fanini, Sarah Faulwetter, Christina Pavloudi, Aikaterini Vasileiadou, Christos Arvanitidis, Lars Juhl Jensen | evangelos | 2020-02-02 | Released | |
CORD-19_All_docs | | All the documents in the whole CORD-19 dataset.
The documents in this project will be updated as the CORD-19 dataset grows.
See the COVID DATASET LICENSE AGREEMENT. | 0 | | Jin-Dong Kim | 2020-03-23 | Released | |
CORD-19_bioRxiv_medRxiv_subset | | The bioRxiv/medRxiv subset of the CORD-19 dataset: pre-prints that are not peer reviewed.
The documents in this project will be updated as the CORD-19 dataset grows.
See the COVID DATASET LICENSE AGREEMENT.
| 0 | | Jin-Dong Kim | 2020-03-23 | Released | |
CORD-19_Commercial_use_subset | | The Commercial use subset of the CORD-19 dataset.
The documents in this project will be updated as the CORD-19 dataset grows.
See the COVID DATASET LICENSE AGREEMENT. | 0 | | Jin-Dong Kim | 2020-03-23 | Released | |