PubMed:4053093 JSONTXT 23 Projects

Mass spectrometry of oligosaccharides by chloride-attachment reactions: the origin of fragment loss. The direct exposure, negative chemical ionisation, chloride-attachment mass spectrometry of trehalose and sucrose gave abundant chloride-attached molecular ions. The same feature was observed when these sugars were subjected to fast-atom bombardment (f.a.b.) in a glycerol matrix containing ammonium chloride. No characteristic fragment ion was found when trehalose was analysed by either method. In contrast, sucrose gave intense chloride-containing fragments, arising by glycosidic cleavage, when analysed by the first method, whereas such cleavage was not detectable by f.a.b.-ammonium chloride analysis. However, the mass-analysed ion kinetic energy (m.i.k.e.) spectra of the (M + Cl)- ions from either trehalose and sucrose, generated under f.a.b.-ammonium chloride conditions, showed glycosidic cleavage reactions in addition to a large loss of HCl. These cleavage reactions might be attributed to SN2-like reactions on the acetal carbon atom and to base-induced eliminations, and they were enhanced by collision-induced dissociations. However, the relative abundance of such glycosidic cleavages from the ionic state would be too weak to explain the presence of the large chloride-containing fragments in the direct exposure spectra of sucrose. Thus, these ions were mainly produced by a thermal cleavage followed by chloride-attachment reactions.

Annnotations TAB TSV DIC JSON TextAE Lectin_function IAV-Glycan

  • Denotations: 0
  • Blocks: 0
  • Relations: 0