PubMed:18766437 22 Projects
Membrane microdomains from early gastrula embryos of medaka, Oryzias latipes, are a platform of E-cadherin- and carbohydrate-mediated cell-cell interactions during epiboly.
Formation of membrane microdomain is critical for cell migration (epiboly) during gastrulation of medaka fish [Adachi et al. (Biochem. Biophys. Res. Commun. 358:848-853, 2007)]. In this study, we characterized membrane microdomain from gastrula embryos to understand its roles in epiboly. A cell adhesion molecule (E-cadherin), its associated protein (beta-catenin), transducer proteins (PLCgamma, cSrc), and a cytoskeleton protein (beta-actin) were enriched in the membrane microdomain. Le(X)-containing glycolipids and glycoproteins (Le(X)-gp) were exclusively enriched in the membrane microdomain. Interestingly, the isolated membrane microdomain had the ability to bind to each other in the presence of Ca(2+). This membrane microdomain binding was achieved through the E-cadherin homophilic and the Le(X)-glycan-mediated interactions. E-cadherin and Le(X)-gp were co-localized on the same membrane microdomain, suggesting that these two interactions are operative at the same time. Thus, the membrane microdomain functions as a platform of the E-cadherin- and Le(X)-glycan-mediated cell adhesion and signal transduction.
|
Annnotations
- Denotations: 0
- Blocks: 0
- Relations: 0