PubMed:11524432 23 Projects
Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase.
The O-fucose modification is found on epidermal growth factor-like repeats of a number of cell surface and secreted proteins. O-Fucose glycans play important roles in ligand-induced receptor signaling. For example, elongation of O-fucose on Notch by the beta1,3-N-acetylglucosaminyltransferase Fringe modulates the ability of Notch to respond to its ligands. The enzyme that adds O-fucose to epidermal growth factor-like repeats, GDP-fucose protein O-fucosyltransferase (O-FucT-1), was purified previously from Chinese hamster ovary (CHO) cells. Here we report the isolation of a cDNA that encodes human O-FucT-1. A probe deduced from N-terminal sequence analysis of purified CHO O-FucT-1 was used to screen a human heart cDNA library and expressed sequence tag and genomic data bases. The cDNA contains an open reading frame encoding a protein of 388 amino acids with a predicted N-terminal transmembrane sequence typical of a type II membrane orientation. Likewise, the mouse homolog obtained from an expressed sequence tag and 5'-rapid amplification of cDNA ends of a mouse liver cDNA library encodes a type II transmembrane protein of 393 amino acids with 90.4% identity to human O-FucT-1. Homologs were also found in Drosophila and Caenorhabditis elegans with 41.2 and 29.4% identity to human O-FucT-1, respectively. The human gene (POFUT1) is on chromosome 20 between PLAGL2 and KIF3B, near the centromere at 20p11. The mouse gene (Pofut1) maps near Plagl2 on a homologous region of mouse chromosome 2. POFUT1 gene transcripts were expressed in all tissues examined, consistent with the widespread localization of the modification. Expression of a soluble form of human O-FucT-1 in insect cells yielded a protein of the predicted molecular weight with O-FucT-1 kinetic and enzymatic properties similar to those of O-FucT-1 purified from CHO cells. The identification of the gene encoding protein O-fucosyltransferase I now makes possible mutational strategies to examine the functions of the unusual O-fucose post-translational modification.
|
Annnotations
last updated at 2021-10-11 06:07:50 UTC
- Denotations: 11
- Blocks: 0
- Relations: 0