PubMed:25048445 JSONTXT 8 Projects

Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues. MAIN CONCLUSION: Maize 1,491 small secreted peptides were identified, which were classified according to the character of peptide sequences. Partial SSP gene expressions in reproductive tissues were determined by qRT-PCR. Small secreted peptides (SSPs) are important cell-cell communication messengers in plants. Most information on plant SSPs come from Arabidopsis thaliana and Oryza sativa, while little is known about the SSPs of other grass species such as maize (Zea mays). In this study, we identified 1,491 SSP genes from maize genomic sequences. These putative SSP genes were distributed throughout the ten maize chromosomes. Among them, 611 SSPs were classified into 198 superfamilies according to their conserved domains, and 725 SSPs with four or more cysteines at their C-termini shared similar cysteine arrangements with their counterparts in other plant species. Moreover, the SSPs requiring post-translational modification, as well as defensin-like (DEFL) proteins, were identified. Further, the expression levels of 110 SSP genes were analyzed in reproductive tissues, including male flower, pollen, silk, and ovary. Most of the genes encoding basal-layer antifungal peptide-like, small coat proteins-like, thioredoxin-like proteins, γ-thionins-like, and DEFL proteins showed high expression levels in the ovary and male flower compared with their levels in silk and mature pollen. The rapid alkalinization factor-like genes were highly expressed only in the mature ovary and mature pollen, and pollen Ole e 1-like genes showed low expression in silk. The results of this study provide basic information for further analysis of SSP functions in the reproductive process of maize.

Annnotations TAB TSV DIC JSON TextAE

last updated at 2021-07-12 16:29:42 UTC

  • Denotations: 10
  • Blocks: 0
  • Relations: 0