PubMed:11250078 13 Projects
Characterization and expression of the genes for cytochrome c oxidase subunit VIb (COX6b) from rice and Arabidopsis thaliana.
Many of the subunits of cytochrome c oxidase (COX) in the mitochondria of higher plants are encoded by nuclear genes. These genes are less characterized compared to mitochondrial-encoded genes. We previously isolated a cDNA encoding COX6b (designated OsCOX6b1 in this study) from the rice nuclear genome and analyzed its expression. The deduced protein had an extended N-terminus compared with human and yeast COX6b proteins. In this study, we identified another COX6b gene (OsCOX6b2) in rice and revealed that it was actually expressed. The deduced protein of this gene did not have an extended N-terminus and had about the same size as the human and yeast proteins. Genomic Southern hybridization analysis revealed that there was at least one OsCOX6b-homologus sequences in the rice genome other than OsCOX6b1 and OsCOX6b2. Furthermore, we identified three COX6b genes in a dicotyledonous plant, Arabidopsis thaliana. One of these genes (AtCOX6b1) was relatively long, with a length similar to that of OsCOX6b1, and the other two (AtCOX6b2 and AtCOX6b3) were shorter, with lengths similar to the length of OsCOX6b2. Genomic Southern hybridization analysis indicated there were no additional COX6b genes in the Arabidopsis genome. The coding regions of OsCOX6b1 and AtCOX6b1 were separated by four introns and those of OsCOX6b2, AtCOX6b2 and AtCOX6b3 were separated by three introns. A Northern hybridization analysis showed that OsCOX6b1, AtCOX6b1 and AtCOX6b3 were expressed in all organs examined, although with some differences in the amount of expression among the organs. OsCOX6b2 and AtCOX6b2 were strongly expressed in roots but most of the transcripts of AtCOX6b2 were degraded. The evolution of COX6b genes from rice and Arabidopsis is discussed.
|
Annnotations
last updated at 2021-03-03 17:55:15 UTC
- Denotations: 116
- Blocks: 0
- Relations: 0