PubMed:9006924 31 Projects
Interaction of GM2 activator protein with glycosphingolipids.
GM2 activator protein is a protein cofactor that has been shown to stimulate the enzymatic hydrolysis of both GalNAc and NeuAc from GM2 (Wu, Y. Y., Lockyer, J. M., Sugiyama, E., Pavlova, N.V., Li, Y.-T., and Li, S.-C. (1994) J. Biol. Chem. 269, 16276-16283). To understand the mechanism by which GM2 activator stimulates the hydrolysis of GM2, we examined the interaction of this activator protein with GM2 as well as with other glycosphingolipids by TLC overlay and Sephacryl S-200 gel filtration. The TLC overlay analysis unveiled the binding specificity of GM2 activator, which was not previously revealed. Under the conditions optimal for the activator protein to stimulate the hydrolysis of GM2 by beta-hexosaminidase A, GM2 activator was found to bind avidly to acidic glycosphingolipids, including gangliosides and sulfated glycosphingolipids, but not to neutral glycosphingolipids. The gangliosides devoid of sialic acids, such as asialo-GM1 and asialo-GM2, and the GM2 derivatives whose carboxyl function in the NeuAc had been modified by methyl esterification or reduction, were only very weakly bound to GM2 activator. These results indicate that the negatively charged sugar residue or sulfate group in gangliosides is one of the important sites recognized by GM2 activator. For comparison, we also studied in parallel the complex formation between glycosphingolipids and saposin B, a separate activator protein with broad specificity to stimulate the hydrolysis of various glycosphingolipids. We found that saposin B bound to neutral glycosphingolipids and gangliosides equally well, and there was an exceptionally strong binding to sulfatide. In contrast to previous reports, we found that GM2 activator formed complexes with GM2 and other gangliosides in different proportions depending on the ratio between the activator protein and the ganglioside in the incubation mixture prior to gel filtration. We were not able to detect the specific binding of GM2 activator to GM2 when GM2 was mixed with GM1 or GM3. Thus, the specificity or the mode of action of GM2 activator cannot be simply explained by its interaction with glycosphingolipids based on complex formation. The binding of GM2 activator to a wide variety of negatively charged glycosphingolipids may indicate that this activator protein has functions other than assisting the enzymatic hydrolysis of GM2.
|
Annnotations
last updated at 2024-09-18 22:59:50 UTC
- Denotations: 1
- Blocks: 0
- Relations: 0