PubMed:10722691 JSONTXT 22 Projects

Recruitment of a foreign quinone into the A(1) site of photosystem I. II. Structural and functional characterization of phylloquinone biosynthetic pathway mutants by electron paramagnetic resonance and electron-nuclear double resonance spectroscopy. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance studies of the photosystem (PS) I quinone acceptor, A(1), in phylloquinone biosynthetic pathway mutants are described. Room temperature continuous wave EPR measurements at X-band of whole cells of menA and menB interruption mutants show a transient reduction and oxidation of an organic radical with a g-value and anisotropy characteristic of a quinone. In PS I complexes, the continuous wave EPR spectrum of the photoaccumulated Q(-) radical, measured at Q-band, and the electron spin-polarized transient EPR spectra of the radical pair P700(+) Q(-), measured at X-, Q-, and W-bands, show three prominent features: (i) Q(-) has a larger g-anisotropy than native phylloquinone, (ii) Q(-) does not display the prominent methyl hyperfine couplings attributed to the 2-methyl group of phylloquinone, and (iii) the orientation of Q(-) in the A(1) site as derived from the spin polarization is that of native phylloquinone in the wild type. Electron spin echo modulation experiments on P700(+) Q(-) show that the dipolar coupling in the radical pair is the same as in native PS I, i.e. the distance between P700(+) and Q(-) (25.3 +/- 0.3 A) is the same as between P700(+) and A(1)(-) in the wild type. Pulsed electron-nuclear double resonance studies show two sets of resolved spectral features with nearly axially symmetric hyperfine couplings. They are tentatively assigned to the two methyl groups of the recruited plastoquinone-9, and their difference indicates a strong inequivalence among the two groups when in the A(1) site. These results show that Q (i) functions in accepting an electron from A(0)(-) and in passing the electron forward to the iron-sulfur clusters, (ii) occupies the A(1) site with an orientation similar to that of phylloquinone in the wild type, and (iii) has spectroscopic properties consistent with its identity as plastoquinone-9.

Annnotations TAB TSV DIC JSON TextAE

last updated at 2024-09-18 17:51:03 UTC

  • Denotations: 3
  • Blocks: 0
  • Relations: 0