PubMed:10072396 3 Projects
Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1.
The Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) protein plays a critical role in the repression of photomorphogenesis during Arabidopsis seedling development. We investigated the control of COP1 partitioning between nucleus and cytoplasm, which has been implicated in the regulation of COP1 activity, by using fusion proteins between COP1 and beta-glucuronidase or the green fluorescent protein. Transient expression assays using onion epidermal cells and data from hypocotyl cells of stably transformed Arabidopsis demonstrated that COP1 carries a single, bipartite nuclear localization signal that functions independently of light. Nuclear exclusion was mediated by a novel and distinct signal, bordering the zinc-finger and coiled-coil motifs, that was able to redirect a heterologous nuclear protein to the cytoplasm. The cytoplasmic localization signal functioned in a light-independent manner. Light regulation of nuclear localization was reconstituted by combining the individual domains containing the nuclear localization signal and the cytoplasmic localization signal; the WD-40 repeat domain of COP1 was not required. However, phenotypic analysis of transgenic seedlings suggested that the constitutively nuclear-localized WD-40 repeat domain was able to mimic aspects of COP1 function, as indicated by exaggerated hypocotyl elongation under light conditions.
|
Annnotations
- Denotations: 29
- Blocks: 0
- Relations: 10