Id |
Subject |
Object |
Predicate |
Lexical cue |
T66 |
0-173 |
Sentence |
denotes |
Results of F(x) provide information most useful for resource allocation to support the prevention and treatment; however F(x) is very insensitive to changes in the epidemic. |
T67 |
174-247 |
Sentence |
denotes |
To better monitor the epidemic, the first derivative of F(x) can be used: |
T68 |
248-700 |
Sentence |
denotes |
2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime }(x)={\int}_{i=1}^{\left(t+1\right)}{x}_i-{\int}_{i=1}^t{x}_i=\sum \limits_{i=1}^{t+1}{x}_i-\sum \limits_{i=1}^t{x}_i $$\end{document}F′x=∫i=1t+1xi−∫i=1txi=∑i=1t+1xi−∑i=1txi |