PubMed:15485686 34 Projects
A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia.
OBJECTIVE: Congenital long QT syndrome (LQTS) with in utero onset of the rhythm disturbances is associated with a poor prognosis. In this study we investigated a newborn patient with fetal bradycardia, 2:1 atrioventricular block and ventricular tachycardia soon after birth.
METHODS: Mutational analysis and DNA sequencing were conducted in a newborn. The 2:1 atrioventricular block improved to 1:1 conduction only after intravenous lidocaine infusion or a high dose of mexiletine, which also controlled the ventricular tachycardia.
RESULTS: A novel, spontaneous LQTS-3 mutation was identified in the transmembrane segment 6 of domain IV of the Na(v)1.5 cardiac sodium channel, with a G-->A substitution at codon 1763, which changed a valine (GTG) to a methionine (ATG). The proband was heterozygous but the mutation was absent in the parents and the sister. Expression of this mutant channel in tsA201 mammalian cells by site-directed mutagenesis revealed a persistent tetrodotoxin-sensitive but lidocaine-resistant current that was associated with a positive shift of the steady-state inactivation curve, steeper activation curve and faster recovery from inactivation. We also found a similar electrophysiological profile for the neighboring V1764M mutant. But, the other neighboring I1762A mutant had no persistent current and was still associated with a positive shift of inactivation.
CONCLUSIONS: These findings suggest that the Na(v)1.5/V1763M channel dysfunction and possible neighboring mutants contribute to a persistent inward current due to altered inactivation kinetics and clinically congenital LQTS with perinatal onset of arrhythmias that responded to lidocaine and mexiletine.
|
Annnotations
last updated at 2021-12-22 06:06:44 UTC
- Denotations: 14
- Blocks: 0
- Relations: 0