PubMed:8872113 JSONTXT 35 Projects

Constitutively hyposialylated human T-lymphocyte clones in the Tn-syndrome: binding characteristics of plant and animal lectins. Previously, beta 1,3-galactosyltransferase-deficient (Tn+) and normal (TF+) T-lymphocyte clones have been established from a patient suffering from Tn-syndrome [Thurnher et al. (1992) Eur J Immunol 22: 1835-42]. Tn+ T lymphocytes express only Tn antigen GalNAc alpha 1-O-R) while other O-glycan structures such as sialosyl-Tn (Neu5Ac alpha 2,6GalNAc alpha 1-O-R) or TF (Gal beta 1-3GalNAc alpha 1-O-R) antigens are absent from these cells as shown by flow cytometry using specific mABs for TF and sialosyl-Tn antigen, respectively. Normal T lymphocytes express the TF antigen and derivatives thereof. The surface glycans of Tn+ and TF+ cells were then analysed by flow cytometry using the following sialic acid-binding lectins: Amaranthus caudatus (ACA), Maackia amurensis (MAA), Limax flavus (LFA), Sambucus nigra (SNA) and Triticum vulgare (WGA). Equal and weak binding of MAA and SNA to both TF+ and Tn+ cells was found. WGA, LFA and ACA bound more strongly to TF+ cells than to Tn+ cells. Binding of ACA to TF+ cells was enhanced after sialidase treatment. To investigate the possible biological consequences of hyposialylation, binding of three sialic acid-dependent adhesion molecules to Tn+ and TF+ cells was estimated using radiolabelled Fc-chimeras of sialoadhesin (Sn), myelin-associated glycoprotein (MAG) and CD22. Equal and strong binding of human CD22 to both TF+ and Tn+ cells was found. Whereas binding of Sn and MAG to TF+ cells was strong (100%), binding to Tn+ cells amounted only to 33% (Sn) and 19% (MAG). These results indicate that the in vivo interactions of T lymphocytes in the Tn syndrome with CD22 are not likely to be affected, whereas adhesion mediated by Sn or MAG could be strongly reduced.

Annnotations TAB TSV DIC JSON TextAE

last updated at 2022-02-18 07:19:18 UTC

  • Denotations: 0
  • Blocks: 0
  • Relations: 0