PubMed:14707485 35 Projects
The influence of ovarian steroids on ovine endometrial glycosaminoglycans.
The ovine endometrium is subjected to cyclic oscillations of estrogen and progesterone in preparation for implantation. One response to fluctuating hormonal levels is the degree of hydration of the tissue, suggesting cyclical alterations in glycosaminoglycan/proteoglycan content. The aim of the present study was to quantitate and characterize glycosaminoglycans in the ovine endometrium during estrogen and progesterone dominant stages. Endogenous endometrial glycosaminoglycan content was determined by chemical analysis and characterized by enzyme specific or chemical degradation. [(35)S]-sulphate and [(3)H]-glucosamine labeled proteoglycans/glycosaminoglycans were extracted by cell lysis or with 4M guanidine-HCl. Extracts were purified by anion exchange and gel chromatography and characterized as above. Estrogen and progesterone dominant endometrium contained 3.2 +/- 0.1 and 2.1 +/- 0.1 mg endogenous glycosaminoglycan/g dehydrated tissue, respectively. Characterization of endogenous glycosaminoglycan showed chondroitin sulphate and hyaluronan contributing over 80%. The major difference between hormonal dominant tissue was a higher estrogenic hyaluronan percentage and a higher progestational keratan sulphate percentage (p < 0.001). Estrogen dominant tissue incorporated 1.6-1.9 fold more radiolabeled proteoglycans/glycosaminoglycans (p < 0.001). Analysis of newly synthesized proteoglycans/glycosaminoglycans revealed a heparan/chondroitin sulphate ratio of 1:2.2-2.5. Keratan sulphate was not detected. Estrogenic hyaluronan was 1.6 fold greater in [(3)H]-labeled tissue. Analysis of labeled proteoglycans/glycosaminoglycans revealed two size classes with apparent molecular weights >2.0 x 10(6) and 0.8-1.1 x 10(5) and a charge class eluting between 0.1-0.5 M NaCl. The greater glycosaminoglycan content (particularly hyaluronan) and synthesis in estrogen dominant tissue supports a role for steroid hormones in endometrial glycosaminoglycan/proteoglycan regulation and consequent tissue hydration. It also suggests a role for these macromolecules in endometrial function and possibly the implantation process.
|
Annnotations
- Denotations: 0
- Blocks: 0
- Relations: 0