PubMed:26692049 JSONTXT 50 Projects

Structural and enzymatic analyses of a glucosyltransferase Alr3699/HepE involved in Anabaena heterocyst envelop polysaccharide biosynthesis. Formation of the heterocyst envelope polysaccharide (HEP) is a key process for cyanobacterial heterocyst differentiation. The maturation of HEP in Anabaena sp. strain PCC 7120 is controlled by a gene cluster termed HEP island in addition to an operon alr3698-alr3699, which encodes two putative proteins termed Alr3698/HepD and Alr3699/HepE. Here we report the crystal structures of HepE in the apo-form and three complex forms that bind to UDP-glucose (UDPG), UDP&glucose and UDP, respectively. The overall structure of HepE displays a typical GT-B fold of glycosyltransferases, comprising two separate β/α/β Rossmann-fold domains that form an inter-domain substrate-binding crevice. Structural analyses combined with enzymatic assays indicate that HepE is a glucosyltransferase using UDPG as a sugar donor. Further site-directed mutageneses enable us to assign the key residues that stabilize the sugar donor and putative acceptor. Based on the comparative structural analyses, we propose a putative catalytic cycle of HepE, which undergoes "open-closed-open" conformational changes upon binding to the substrates and release of products. These findings provide structural and catalytic insights into the first enzyme involved in the HEP biosynthesis pathway.

Annnotations TAB TSV DIC JSON TextAE

  • Denotations: 0
  • Blocks: 0
  • Relations: 0