PubMed:8288613 JSONTXT 20 Projects

The carboxyl-terminal domain of kinesin heavy chain is important for membrane binding. Sea urchin kinesin is a plus end-directed microtubule-based motor consisting of two heavy chains and two light chains and is proposed to be responsible (a) for the transport of membranous organelles along microtubules in sea urchin mitotic spindles (Wright, B. D., Henson, J. H., Wedaman, K. P., Willy, P. J., Morand, J. N., and Scholey, J. M. (1991) J. Cell Biol. 113, 817-833) and (b) for the radial dispersion of endoplasmic reticulum and endosomal membranes in non-mitotic cultured coelomocytes (Henson, J. H., Nesbitt, D., Wright, B. D., and Scholey, J. M. (1992) J. Cell Sci. 103, 309-320). We report here that sea urchin kinesin is indeed able to bind in a concentration-dependent and saturable manner to microsomal membranes isolated from sea urchin eggs in the presence of MgATP. The kinesin light chains may not be essential for membrane binding since kinesin containing negligible amounts of light chains binds as well as kinesin containing stoichiometric amounts of light chains. Finally, we propose that kinesin binds to membranes with the carboxyl-terminal domain of the heavy chain (amino acid residues 858-1031) since the bacterially expressed and then isolated stalk-tail fragment of kinesin heavy chain, in contrast to the stalk fragment, is able (a) to bind membranes in a concentration-dependent and saturable manner and (b) to compete with native kinesin for membrane binding. Our results support the hypothesis that the carboxyl-terminal domains of the heavy chains attach kinesin molecules to their membranous cargo in mitotic and interphase sea urchin cells.

Annnotations TAB TSV DIC JSON TextAE

last updated at 2024-12-01 01:18:04 UTC

  • Denotations: 0
  • Blocks: 0
  • Relations: 0