PubMed:9395462 JSONTXT 35 Projects

The effect of apolipoprotein A-II on the structure and function of apolipoprotein A-I in a homogeneous reconstituted high density lipoprotein particle. In this study we examined the effects of apoA-II on the structure and function of apoA-I in homogeneous reconstituted HDL (rHDL). First, we measured the binding of apoA-II to apoA-I-rHDL, containing dipalmitoylphosphatidylcholine or palmitoyloleoylphosphatidylcholine, and the degree of apoA-I displacement at various ratios of apolipoproteins. Using fluorescence methods, we determined that apoA-II binding is rapid, irreversible, and associated with apoA-I displacement only when the molar ratio of apoA-II/apoA-I is greater than 1:2. Next, we used the stable apoA-II/apoA-I-rHDL complex at the apoA-II/apoA-I ratio of 1:2 to examine its physical properties, apoA-I structure, and reactivity with lecithin:cholesterol acyltransferase (LCAT). Using chemical cross-linking in conjunction with fluorescence and electrophoretic methods, we demonstrated that the conformation of apoA-I must be flexible to allow apoA-II binding to the apoA-I-rHDL particles and showed that the hybrid particles have an unchanged Stokes diameter. Fluorescence and circular dichroism measurements revealed little or no change in the secondary structure or in the N-terminal domain of apoA-I, but showed a marked destabilization of apoA-I to denaturation by guanidine hydrochloride. Limited tryptic digestion indicated that the central region of apoA-I becomes accessible to proteolysis in the hybrid particles. Together, these results suggest that amphipathic alpha-helices of apoA-II replace four central helices of one apoA-I molecule (residues approximately 99-187) in the complex and in the process destabilize apoA-I. Thus, apoA-II binding at physiologic ratios may not completely displace apoA-I from HDL, but may provide a reservoir of easily exchangeable apoA-I. Finally, we showed that the reaction of the hybrid HDL with LCAT was inhibited 2-5-fold, relative to apoA-I-rHDL, due to a corresponding increase in the apparent Km value. This suggests that LCAT binding to the hybrid particles is sterically hindered by the excess protein (portions of apoA-I and apoA-II not bound to lipid). Therefore, apoA-II can modulate the reaction of HDL with LCAT by decreasing LCAT binding to hybrid particles and making the enzyme available for reaction with other substrates.

Annnotations TAB TSV DIC JSON TextAE-old TextAE

  • Denotations: 0
  • Blocks: 0
  • Relations: 0