PubMed:11243705 JSONTXT

Directly linked soluble IL-6 receptor-IL-6 fusion protein induces astrocyte differentiation from neuroepithelial cells via activation of STAT3. Signals of interleukin 6 (IL-6) are transduced by binding of IL-6 to its cell surface receptor (IL-6R) and subsequent association of the resultant IL-6/IL-6R complex with gp130, the signal transducing receptor component utilized in common by all the IL-6 family of cytokines. A soluble form of IL-6R (sIL-6R), which lacks transmembrane and cytoplasmic regions, retains the ability to bind IL-6 and signal through gp130. We show here that a fusion protein of sIL-6R and IL-6 without a polypeptide linker, termed FP6, induces differentiation of astrocytes from fetal mouse neuroepithelial cells as potently as a representative IL-6 family cytokine, leukaemia inhibitory factor (LIF). FP6 has a potential to activate a transcription factor, signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinases, ERK1 and ERK2, in these cells as does LIF. FP6 activates a promoter of the gene for an astrocytic marker, glial fibrillary acidic protein (GFAP), in neuroepithelial cells. This activation is virtually abolished by ectopic expression of a dominant-negative form of STAT3, or by introducing a point mutation into the STAT3 response element located in the GFAP promoter. These results suggest that FP6 induces astrocyte differentiation from neuroepithelial cells through STAT3 activation and that FP6 could be of use as a substitute for natural IL-6 family cytokines.

Annnotations TAB TSV DIC JSON TextAE

  • Denotations: 34
  • Blocks: 0
  • Relations: 0