PubMed:22705120 / 1291-1298
Proteomic analysis of Bacillus thuringiensis ΔphaC mutant BMB171/PHB(-1) reveals that the PHB synthetic pathway warrants normal carbon metabolism.
A phaC knockout mutant from Bacillus thuringiensis (Bt) strain BMB171, named BMB171/PHB(-1), was constructed. A physiological and metabolic investigation and a proteomic analysis were conducted for both ΔphaC mutant and its parent strain. Grown in peptone medium with 5 gram glucose per liter as sole carbon source, BMB171/PHB(-1) produced various organic acids. Here the excreted pyruvate, citrate, lactate, acetate and glutamate were quantitatively analyzed. Deletion of phaC gene from the BMB171 strain resulted in 1) growth delay; 2) higher consumption of dioxigen but lower cell yield; 3) stagnation of pH movement; 4) overproduction of organic acids; 5) rapid descent of cell density in the stationary phase; and 6) a sporulation-deficient phenotype. Our proteomic study with qPCR reconfirmation reveals that the absence of PhaC led to a metabolic turmoil which showed repressed glycolysis, and over-expressed TCA cycle, various futile pathways and amino acid synthesis during vegetative growth. It is thus thought that B. thuringiensis BMB171 effectively regulated its carbon metabolism upon the presence of the functional PHB synthetic pathway. The presence of this pathway warrants a PHB-producing bacterium better surviving under different environmental conditions.
|
Annnotations
- Denotations: 1
- Blocks: 0
- Relations: 0