PubMed:18816083 / 1071-1079 2 Projects
Proteome analysis of multidrug resistance of human oral squamous carcinoma cells using CD147 silencing.
There is a correlation between the multidrug-resistance (MDR) of cancer cells and their enhanced invasive or metastatic potential. We studied the expression of CD147, a plasma membrane glycoprotein that plays a key role in tumor metastasis by stimulating the production of matrix metalloproteinases (MMPs), in sensitive human oral squamous KB and MDR derivative KB/V cells. Reverse transcription-PCR and flow cytometric analysis revealed that KB/V cells expressed CD147 at significantly higher levels than their parental KB cells. Using stable RNA interference, we succeeded in establishing a CD147 knock-down KB/V cell line (KB/VsiCD147). MTT colorimetric assay showed an increase in the chemosensitivity to vincristine (VCR), all transretinoic acid (ATRA), taxol, and 5-fluorouracil (5-Fu) of KB/VsiCD147 cells. Proteome analysis of KB, KB/V, and KB/VsiCD147 cell lines identified 21 differently expressed proteins. The enhanced expression of representative active proteins, GRP75 and CyPA, was confirmed by Western blotting and RT-PCR. In addition, pretreatment of KB/V cells with a CyPA-binding immunosuppressive drug, cyclosporine A (CsA), enhanced their chemosensitivity to VCR and 5-Fu. We document an abundance of molecules that interact with CD147 in the MDR of human oral squamous carcinoma cells. Additional studies are needed to investigate these novel target proteins of CD147.
|
Annnotations
- Denotations: 1
- Blocks: 0
- Relations: 0