| Id |
Subject |
Object |
Predicate |
Lexical cue |
| T1 |
151-675 |
OBJECTIVE |
denotes |
Immunomodulatory properties of mesenchymal stem cells (MSCs) have been applied to reduce the incidence of graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation (HSCT). Among the various sources of MSCs that have immunomodulatory effects in vitro, only placenta-derived MSCs (PD-MSCs) have not been evaluated in an in vivo model of GVHD. In this study, we investigated the immunomodulatory properties of PD-MSCs in vitro and evaluated their clinical potential for controlling GVHD in an animal model. |
| T2 |
685-935 |
METHODS |
denotes |
A GVHD animal model was established by transplanting C57BL/6 donor bone marrow cells and spleen cells into lethally irradiated BALB/c recipient mice. To control GVHD, human PD-MSCs were transplanted into recipient mice (5 × 10(5) or 1 × 10(6) cells). |
| T3 |
945-1347 |
RESULTS |
denotes |
PD-MSCs suppressed mitogen-stimulated T cell proliferation in vitro in a dose-dependent manner. Moreover, PD-MSCs inhibited cytokine secretion (interleukin-12, tumor necrosis factor-α and interferon-γ) of activated T cells. In vivo, the survival rate in the PD-MSC group (transplanted with 1 × 10(6) cells) was higher than that in the control group and histological scores were low in the PD-MSC group. |
| T4 |
1360-1463 |
CONCLUSIONS |
denotes |
We present the first evidence that human PD-MSCs can efficiently control GVHD in an HSCT in vivo model. |