PubMed:27734319 / 252-267 JSONTXT 2 Projects

Effects of selenium on short-term control of hyperthyroidism due to Graves' disease treated with methimazole: results of a randomized clinical trial. OBJECTIVE: In spite of previous conflicting results, an adjuvant role of selenium in the treatment of Graves' disease (GD) hyperthyroidism has been proposed. To address this issue, a randomized clinical trial was carried out aimed at investigating whether selenium is beneficial on the short-term control of GD hyperthyroidism treated with methimazole (MMI). METHODS: Thirty newly diagnosed hyperthyroid GD patients were randomly assigned to treatment with: (i) MMI or (ii) MMI plus selenium. Primary outcomes were: control of hyperthyroidism and clinical and biochemical manifestations of hyperthyroidism [heart rate, cholesterol, sex hormone-binding globulin (SHBG), hyperthyroidism symptoms] at 90 days. RESULTS: Baseline features of the two groups did not differ. Serum selenium at baseline was similar in the two groups and within the recommended range to define selenium sufficiency. Selenium increased with treatment in the MMI-selenium group and became significantly higher than in the MMI group. Serum malondialdehyde, a marker of oxidative stress, was similar in the two groups and decreased significantly with treatment, with no difference between groups. Administration of MMI was followed by a reduction of FT3 and FT4, with no difference between groups. Heart rate, SHBG and symptoms of hyperthyroidism decreased, whereas total cholesterol increased in both groups with no difference between groups. CONCLUSIONS: Our study, carried out in a selenium-sufficient cohort of GD patients, failed to show an adjuvant role of selenium in the short-term control of hyperthyroidism. However, selenium might be beneficial in patients from selenium-deficient areas, as well as in the long-term outcome of antithyroid treatment.

Annnotations TAB TSV DIC JSON TextAE

last updated at 2024-10-07 12:29:15 UTC

  • Denotations: 1
  • Blocks: 0
  • Relations: 0