PubMed:11323440 / 108-127 JSONTXT 2 Projects

Molecular cloning and expression of a novel human beta-Gal-3-O-sulfotransferase that acts preferentially on N-acetyllactosamine in N- and O-glycans. A novel cDNA-encoding galactose 3-O-sulfotransferase was cloned by screening the expressed sequence tag data base using the previously cloned cDNA encoding a galactosyl ceramide 3-O-sulfotransferase, which we term Gal3ST-1. The newly isolated cDNA encodes a novel 3-O-sulfotransferase, termed Gal3ST-3, that acts exclusively on N-acetyllactosamine present in N-glycans and core2-branched O-glycans. These conclusions were confirmed by analyzing CD43 chimeric proteins in Chinese hamster ovary cells expressing core2 beta1,6-N-acetylglucosaminyltransferase. The acceptor specificity of Gal3ST-3 contrasts with that of the recently cloned galactose 3-O-sulfotransferase (Honke, K., Tsuda, M., Koyota, S., Wada, Y., Iida-Tanaka, N., Ishizuka, I., Nakayama, J., and Taniguchi, N. (2001) J. Biol. Chem. 276, 267-274), which we term Gal3ST-2 in the present study because the latter enzyme can also act on core1 O-glycan and type 1 oligosaccharides, Galbeta1-->3GlcNAc. Moreover, Gal3ST-3 but not Gal3ST-2 can act on Galbeta1-->4(sulfo-->6)GlcNAc, indicating that disulfated sulfo-->3Galbeta1-->4(sulfo-->6) GlcNAc-->R may be formed by Gal3ST-3 in combination with GlcNAc 6-O-sulfotransferase. Although both Gal3ST-2 and Gal3ST-3 do not act on galactosyl ceramide, Gal3ST-3 is only moderately more homologous to Gal3ST-2 (40.1%) than to Gal3ST-1 (38.0%) at the amino acid level. Northern blot analysis demonstrated that transcripts for Gal3ST-3 are predominantly expressed in the brain, kidney, and thyroid where the presence of 3'-sulfation of N-acetyllactosamine has been reported. These results indicate that the newly cloned Gal3ST-3 plays a critical role in 3'-sulfation of N-acetyllactosamine in both O- and N-glycans.

Annnotations TAB TSV DIC JSON TextAE

last updated at 2023-01-06 10:00:10 UTC

  • Denotations: 1
  • Blocks: 0
  • Relations: 0