PubMed:11133022 / 109-117
Globotriaosyl ceramide modulates interferon-alpha-induced growth inhibition and CD19 expression in Burkitt's lymphoma cells.
Previous studies have indicated that globotriaosyl ceramide (Gb3 or CD77) plays a role in alpha-interferon signal transduction and CD19-mediated homotypic adhesion in B cell lines derived from Burkitt's lymphoma. These roles for Gb3 may involve the proteins IFNAR-1 (subunit 1 of the interferon-alpha receptor) and CD19, respectively, both of which have potential Gb3-binding sites in their extracellular domains which resemble those of the verotoxin (Shiga toxin and Shiga-like toxin) B subunit. The majority of this work was performed using wild-type Daudi cells and a single, Gb3-deficient mutant cell line, VT500. In the present investigations, these and additional Daudi-derived cells with varying degrees of sensitivity to interferon-alpha were examined for Gb3 expression, interferon-induced growth inhibition and CD19 expression. The degree of interferon-induced growth inhibition and CD19 expression correlated with Gb3 expression in the various cell lines tested. In addition, reconstitution of the VT500 cell line with Gb3 but not other glycolipids partially restored the sensitivity of cells to IFN-induced growth inhibition. The degree to which reconstitution restored sensitivity to growth inhibition was similar to the results of previous studies in which Gb3 reconstitution restored sensitivity to verotoxin-induced cytotoxicity. These results demonstrate that Gb3 is specifically required for IFN-induced growth inhibition in Daudi cells and provide further evidence of a role for Gb3 in CD19 expression and function in these cells.
|
Annnotations
- Denotations: 1
- Blocks: 0
- Relations: 0