CL-cell  

PubMed:11706004 / 1097-1108 JSONTXT 3 Projects

Procollagen with skipping of alpha 1(I) exon 41 has lower binding affinity for alpha 1(I) C-telopeptide, impaired in vitro fibrillogenesis, and altered fibril morphology. Previous in vitro data on type I collagen self-assembly into fibrils suggested that the amino acid 776-796 region of the alpha1(I) chain is crucial for fibril formation because it serves as the recognition site for the telopeptide of a docking collagen monomer. We used a natural collagen mutation with a deletion of amino acids 766-801 to confirm the importance of this region for collagen fibril formation. The proband has type III osteogenesis imperfecta and is heterozygous for a COL1A1 IVS 41 A(+4) --> C substitution. The intronic mutation causes splicing of exon 41, confirmed by sequencing of normal and shorter reverse transcriptase-PCR products. Reverse transcriptase-PCR using RNA from proband dermal fibroblasts and clonal cell lines showed the mutant cDNA was about 15% of total alpha1(I) cDNA. The mutant transcript is translated; structurally abnormal alpha chains are demonstrated in the cell layer of proband fibroblasts by SDS-urea-PAGE. The proportion of mutant chains in the secreted procollagen was determined to be 10% by resistance to digestion with MMP-1, since chains lacking exon 41 are missing the vertebral collagenase cleavage site. Secreted proband collagen was used for analysis of kinetics of binding of alpha1(I) C-telopeptide using an optical biosensor. Telopeptide had slower association and faster dissociation from proband than from normal collagen. Purified proband pC-collagen was used to study fibril formation. The presence of the mutant molecules decreases the rate of fibril formation. The fibrils formed in the presence of 10-15% mutant molecules have strikingly increased length compared with normal collagen, but are well organized, as demonstrated by D-periodicity. These results suggest that some collagen molecules containing the mutant chain are incorporated into fibrils and that the absence of the telopeptide binding region from even a small portion of the monomers interferes with fibril growth. Both abnormal fibrils and slower remodeling may contribute to the severe phenotype.in

Annnotations TAB TSV DIC JSON TextAE

last updated at 2024-10-28 03:50:33 UTC

  • Denotations: 1
  • Blocks: 0
  • Relations: 0