> top > projects > 2_test > docs > PMC:1679804 > spans > 3687-3688
2_test  

PMC:1679804 / 3687-3688 JSONTXT

SMOTIF: efficient structured pattern and profile motif search Abstract Background A structured motif allows variable length gaps between several components, where each component is a simple motif, which allows either no gaps or only fixed length gaps. The motif can either be represented as a pattern or a profile (also called positional weight matrix). We propose an efficient algorithm, called SMOTIF, to solve the structured motif search problem, i.e., given one or more sequences and a structured motif, SMOTIF searches the sequences for all occurrences of the motif. Potential applications include searching for long terminal repeat (LTR) retrotransposons and composite regulatory binding sites in DNA sequences. Results SMOTIF can search for both pattern and profile motifs, and it is efficient in terms of both time and space; it outperforms SMARTFINDER, a state-of-the-art algorithm for structured motif search. Experimental results show that SMOTIF is about 7 times faster and consumes 100 times less memory than SMARTFINDER. It can effectively search for LTR retrotransposons and is well suited to searching for motifs with long range gaps. It is also successful in finding potential composite transcription factor binding sites. Conclusion SMOTIF is a useful and efficient tool in searching for structured pattern and profile motifs. The algorithm is available as open-source at: . Background Searching biological sequence(s) for motifs is a fundamental task in bioinformatics. Motifs can be represented as either patterns over a specific alphabet, or profiles (also called positional weight matrix (PWM)), which give the probability of observing each symbol in each position. Motifs can be classified into two main types. If no variable gaps are allowed in the motif, it is called a simple motif. For example, in the genome of Saccharomyces cerevisiae, the binding sites of transcription factor, GAL4 [1], can be characterized by the simple motif shown in Table 1, which illustrates the pattern over the IUPAC alphabet (ΣIUPAC; see Table 2), as well as its profile (which gives the frequency of each DNA base at each position). The motif in Table 1 only consists of one component and thus is a simple motif. Since the symbols in the first 3 positions (CGS) and in the last 3 positions (SCG) are well conserved, we can also represent this motif as CGS[11,11]SCG, where [11,11] means that there is a fixed "gap" of length 11 between the two components. If variable gaps are allowed in a motif, it is called a structured motif. A structured motif can be regarded as an ordered collection of simple motifs with gap constraints between each pair of adjacent simple motifs. For example, the LTR retrotransposons from the Copia group, corresponding to genes encoding reverse transcriptase, in A. thaliana can be characterized by the structured motif M1 [2,5] M2 [6,7] M3, as shown in Table 3[2]. Here M1, M2 and M3 are three simple motifs; [2,5] and [6,7] are variable gap constraints ([minimum gap, maximum gap]) allowed between the adjacent simple motifs. Note that each simple motif Mi (with 1 ≤ i ≤ 3) can either be a pattern over ΣIUPAC or a profile over ΣDNA. Searching for structured motifs is more complicated than searching for simple motifs, and is an ongoing research area [3-7]. The sequence to be searched can be very long, e.g., chromosome 1 of Homo Sapiens contains 245 million (245M) base pairs. The structured motif can also be as long as several kilobases. All these factors need to be considered when designing an efficient structured motif search algorithm. Table 1 A Simple Motif Symbols Motif A 0 0 0 4 1 1 7 0 5 1 0 2 0 2 0 0 0 C 10 0 1 2 3 5 0 7 0 4 2 5 5 1 9 10 0 G 0 10 9 4 5 3 2 3 0 3 1 1 4 1 1 0 10 T 0 0 0 0 1 1 1 0 5 2 7 2 1 6 0 0 0 IUPAC C G S V N N D S W N B N B N S C G The binding sites for the transcription factor GAL4 in S. cerevisiae satisfy this motif [1]. Rows 2–5 show the profile (the frequency of observing a DNA base in a given position). The last row shows the corresponding pattern over the IUPAC alphabet. Table 2 IUPAC Alphabet (ΣIUPAC) Symbol A C G T U R Y K Bases A C G T U A,G C,T G,T Symbol M S W B D H V N Bases A,C G,C A,T C,G,T A,G,T A,C,T A,C,G A,C,G,T Table 3 A Structured Motif Symbols M 1 M 2 M 3 A 2 12 17 1 11 1 35 0 24 1 0 3 1 35 C 0 10 8 5 2 0 0 19 0 0 25 5 35 1 G 2 5 5 2 10 34 1 0 0 26 11 0 0 0 T 32 9 6 28 13 1 0 17 12 9 0 28 0 0 IUPAC D N N N N D R Y W D S H M M We aligned the 36 A. thaliana LTR retrotransposons from Repbase Update [2] database which belong to Copia group corresponding to genes encoding reverse transcriptase to obtain the structured motif M1 [2,5] M2 [6,7] M3. Rows 2–5 show the profile (the frequency of observing a DNA base in a given position), and the last row shows the corresponding pattern over the IUPAC alphabet. More formally, a structured motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@, is specified in the form: M1 [l1, u1] M2 [l2, u2] M3 ... Mk-1 [lk-1, uk-1] Mk, where Mi, 1 ≤ i ≤ k, is a simple motif component; and li and ui (with 0 ≤ li ≤ ui), 1 ≤ i u: Advance x to the next element in P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(X). • l ≤ d ≤ u: Save this occurrence in P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(X [l, u] Y), and then advance x. The pos-list for X [l, u] Y can be computed in time linear in the lengths of P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(X) and P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(Y). In essence, each time we advance x ∈ P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(X), we check if there exists a y ∈ P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(Y) that satisfies the given gap constraint. Instead of searching for the matching y from the beginning of the pos-list each time, we search from the last position used to compare with x. This results in fast positional joins, and also allows overlaps among occurrences. For example, during the positional join for the motif T[0, 1]A, with l = 0 and u = 1, we scan the pos-lists of T and A in Table 5. Initially, x = 4 and y = 3. This gives d = 3 - 4 - 1 = -2 u, thus we advance x to 8. Next, d = 10 - 8 - 1 = 1 ∈ [0, 1]. So we store x = 8 in P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(T[0, 1] A) and advance x to 9. By continuing the process, we get the final pos-list as P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(T[0,l] A) = {8, 9, 14}. Given a longer motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@, the positional joins start with the last two symbols, and proceed by successively joining the pos-list of the current symbol with the intermediate pos-list of the suffix. Formally, let H [l, u] T be an intermediate pattern, with symbol H as the head symbol, and a suffix structured motif T as tail. The pos-list of H [l, u] T is obtained by doing positional join on the pos-list of H and the pos-list of T. As the computation progresses the previous tail pos-lists are discarded. Combined with the fact that only start positions are kept in a pos-list, this saves both time and space. SMOTIF handles both simple and structured motifs uniformly, by adding the gap range [0, 0] between adjacent symbols within each simple motif Mi. For our example in Table 4, the structured motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ becomes: G[0,0]C[0,1]T[0,0]T[0,0]A[1,4]C[0,0]A[0,0]T. Furthermore, SMOTIF treats the IUPAC symbol N (which stands for any of the four bases: A,C,G,T) as a gap, [1,1], and merges it with adjacent gaps in the motif. For example, the motif A[0,0]N[0,0]N[0,0]C will be first converted to A[0, 0][1,1][0,0][1,1][0,0]C, and then the adjacent gaps will be combined to obtain A[2,2]C as the final motif. Figure 2 shows how the positional joins work for our (expanded) motif from Table 4. At any stage in the process, the head symbol's pos-list corresponds to the full list of positions shown, whereas the tail's pos-list consists only of the positions shown in bold. For example, when computing A[1,4]CAT, the pos-list of the tail CAT is {2, 12, 15}, and that of the head symbol A is {3, 10, 13, 16}. Also, for illustration, we add a link between any two positions (x and y) in adjacent columns if their difference (d = y - x - 1) falls within the corresponding gap range. The joins begin with the last two symbols, with A as the head and T as the tail with a gap of [0,0]. The only positions x ∈ P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(A) that satisfy the adjacent gap constraint are 3, 13 and 16 (marked in bold), that form the pos-list of A[0,0]T. Next we join P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(C) with P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(A[0,0] T) to get the valid positions 2,12 and 15. At the next step we need to consider A as the head, with constraint [1,4], followed by the tail C [0,0] A [0,0] T. The only positions in P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(A) that satisfy the gap constraint of l = 1 and u = 4 are 10 and 13. Note also how position 2 that was in the tail's pos-list cannot be extended, since there is no position where A occurs within a gap of [1,4] before the tail CAT. The join process continues until the first symbol, and we finally get 5 as the only start occurrence for the full structured motif. Figure 2 Positional Joins Example. The figure shows how the positional joins work for the (expanded) motif from Table 4. Full position recovery In our positional join approach, to save time and space we retain only the motif start positions, however, in some applications, we may need to know the full position of each occurrence, i.e., the set of matching positions for each symbol in the motif. We describe two approaches to recover the full positions: recomputed or indexed full-position recovery. Recomputed full position recovery For recomputing the full positions SMOTIF needs access to only the sequence S and the post-list P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@). Let s ∈ P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@) be a start position for the structured motif in sequence S. Figure 3 shows how to recompute the full positions starting from s. Note that a structured motif with maximum span L must be found within position range [s, s + L - 1], so we can stop searching from s after the maximum span is reached. During the full position recovery, we maintain a list of intermediate position prefixes ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ that match the prefix of ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@. For an intermediate prefix F ∈ ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@, let |F| denote the number of positions in F. Initially ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {(s)}. For each symbol S [i] with i ∈ [s + 1, s + L - 1] in sequence S, we consider each candidate prefix F ∈ ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ and check whether ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@[|F| + 1] = S [i] and d = i - F [|F|] ∈ [l, u]. If yes, S [i] is a valid occurrence of ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@[|F| + 1], and we append position i to F. If there are multiple positions i that are valid occurrences for ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@[|F| + 1], we add as many copies of F appended with the i positions to ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@. A prefix F is removed if there are no symbols in S which match within the maximum gap. The algorithm stops once all F ∈ ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ are full positions or if the maximum span L has been reached. As an example, let's assume we want to recover the full position for the motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ = GC[1,2]T in our the sequence S from Table 4, starting from position s = 5. The recovery process is illustrated in Figure 4. Since the maximum span of ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ is L = 5 the figure shows positions 5 through 9 in S, which are the only valid positions where ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ may be found. Initially, ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {(5)}, and we know that ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@[1] = S [5]. Next S [6] = C = ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@[2] match and are also adjacent in S, so we update ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {(5, 6)}. We discard S [7] since it doesn't match ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@[3]. However, both S [8] = T = ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@[3] and S [9] = T = ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@[3] are valid matches within the gap constraints. Thus we update ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {(5, 6, 8), (5, 6, 9)}. At this point we have reached the maximum span, and also all F ∈ ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ are full positions, so we stop. Figure 3 Recomputed Full Position Recovery Algorithm. Figure 4 Recomputed Full-position Recovery Example. The figure shows how recomputed full-position recovery, using the structured example shown. Indexed full position recovery Rather than recomputing the positions, we can "index" some information during the positional joins in order to facilitate full position recovery. For each suffix of ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ starting at position i with 1 ≤ i ≤ |ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@|, we keep its pos-list, P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i, and an index list, N MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtaaa@383B@i. For each entry, say P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i [j], in the pos-list P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i, the corresponding index entry N MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtaaa@383B@i [j], points to the first entry, say l, in P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i+1 that satisfies the gap range with respect to P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i [j], i.e., P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i+1 [l] - P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i [j] - 1 ∈ [li, ui]. Note that N|ℳ| MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtdaWgaaWcbaGaeiiFaWNae83mH0KaeiiFaWhabeaaaaa@3C8D@ is never used. Also note that P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@) = P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@1. Let s be a start position for the structured motif in sequence S, and let s be the js-th entry in P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@1, i.e., s = P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@1[js]. Also let F store a full position starting from s, and let ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ store the set of all full positions. Figure 5 shows the pseudo-code for recovering full positions starting from s. This recursive algorithm has two parameters: i denotes a (suffix) position in ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@, and j gives the j-th entry in P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i. The algorithm is initially called with ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {F = {s}}, i = 2 and with j = N MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtaaa@383B@1[js]. Since we have P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@2[j] - F [1] - 1 ∈ [l1, u1] we set F [2] = P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@2[j]. In the next call we can follow the index N MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtaaa@383B@2[j] to get the next position in F, namely F [3]. Thus in each call we keep following the indices from one pos-list to the next and finally we can get a full position starting from s when we reach the last pos-list, P|M|. Furthermore, at each suffix position i, since j only marks the first position in P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i+1 that satisfies the gap constraints, we also need to consider all the subsequent positions j' > j that may satisfy the corresponding gap range. Consider the example shown in Figure 6 to recover the full positions for our example motif from Table 4. Under each symbol we show two columns. The left column corresponds to the intermediate pos-lists P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i (compare to Figure 2), whereas the right column stores the indices N MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtaaa@383B@i into the pos-list P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@i+1. For example, P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(A[0,0]T) = P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@7 = {3, 13, 16}, and N MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtaaa@383B@7 = {1, 4, 5}. For example, for entry P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@7[2] = 13, we have N MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtaaa@383B@7[2] = 4, which means that the first position in P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@8 = P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(T) that satisfies the gap range [0,0] is 14, which occurs at index 4, i.e., P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@8[4] - P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@7[2] - 1 = 14 - 13 - 1 = 0 ∈ [0,0]. To recover the full position for our example motif, from start position 5, we follow index 1 to get position 6 in the next pos-list, to obtain ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {(5, 6)}. Then we keep following the indices and get ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {(5, 6, 8, 9)}. In the next step, we follow to position 10 (at index 1); a quick check for the gap range [0,0] discards position 13. We now have ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {(5, 6, 8, 9, 10)}. In the next step we immediately jump to position 12 (at index 2). However, both 12 and 15 are within the gap range [1,4]. From 12, we will eventually get F = (5, 6, 8, 9, 10, 12, 13, 14), whereas from 15, we will eventually get F = (5, 6, 8, 9, 10, 15, 16, 17), as the two possible full-positions. Figure 5 Indexed Full Position Recovery Algorithm. Figure 6 Indexed Full-position Recovery Example. The figure shows how indexed full-position recovery, using the (expanded) motif from Table 4. Sequence segmentation The SMOTIF approach as described above works well for searching a motif in a relatively short sequence. For a very long sequence S (e.g., searching for (LTR) retrotransposons in an entire chromosome) the pos-lists can get very long in the initial stages, consuming a lot of memory. SMOTIF handles a long sequence by splitting it into several segments and searches each segment separately for the structured motif. That is, the sequence S is split into p equal partitions (except for the last one). Handling each smaller segment Si (i ∈ [l, p]) instead of the original S can save a lot of space and also reduces the total search time. After segmentation, to avoid missing any occurrence, we require that each partition Si, with i ∈ [l, p - 1], include the first L - 1 symbols from partition Si+1. Finally, to avoid duplicate occurrences, we discard all occurrences with a start position in the overlap region, since it would be reported when we process segment Si+1. For example, let S be the sequence in Table 6, and let the structured motif be ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ = GC[1,2]T with maximum span L = 5. If p = 3, then we would have three segments of length 6 each. After adding the overlap region of L - 1 = 4 positions at the end of each segment, we obtain the final three segments shown in Table 6. Two start positions of ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ would be found in S1 (namely 1 and 5), and one in S2 (namely 11). Note that start positions 5 and 11 would have been missed if we had no overlap. So far we have assumed that we are searching for the structured motif in a single sequence. SMOTIF can easily handle a collection S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@ of sequences. We simply search each sequence separately using segmentation when necessary. Table 6 Segmentation into p = 3 S G C A T G C G T T A G C A T C A T C S 1 G C A T G C G T T A S 2 G T T A G C A T C A S 3 A T C A T C Missing components In some applications a partial match of the structured motif might still be of interest. SMOTIF allows up to q simple motif components to be missing during the search. Let ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ be a structured motif with k components. SMOTIF first enumerates all possible sub-motifs having k' components, where k' ∈ [k - q, k]. Next, the gap ranges are adjusted in each sub-motif to account for skipping over the missing components. The new gap range, [li,j, ui,j], between components Mi and Mj (with 1 ≤ i -2.02; then a check for the prefix up to position 2 gives W MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFwe=vaaa@384D@A1 + W MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFwe=vaaa@384D@A2 = 0.83 > -0.66. By continuing this process, we see that AACG satisfies the core score threshold as well as the score threshold. Figure 9(a) shows all the matching positions, i.e., the pos-list, for each component in the profile. Figure 9 Profile Positional Joins and Full Position Recovery. The example sequence S has length 36. (a) Under each component Mi, 1 ≤ i ≤ 3 a set of tuples are listed in the format (start position, subsequence, score, core score). (b) Minimum Simple Scores row gives the minimum score threshold for any prefix of a component; (c) Minimum Core Scores gives the minimum core score threshold for any prefix of core positions for each component; (d) Minimum Structured Scores gives the minimum score threshold for each (component-wise) suffix of the structured motif; (e) The final pos-lists and the index for each component; (f) The motifs (M) that satisfy the profile, along with their full positions (F). Structured motif scoring and positional joins After obtaining the pos-lists of simple motif components, we can enumerate structured motifs by doing positional joins on these pos-lists, as already outlined for structured pattern search. We compute the positional joins with Mi as the head and Mi+1 ⋯ Mk as the tail, as we start from Mk as the head and end at M1 as the head. During the positional joins we also check the partial structured score thresholds λn (Mi ⋯ Mk). If the check fails at any stage we prune the match candidate. We keep a pattern (along with its score) only if it satisfies the full structured score threshold λn. Figure 9(a) shows how to enumerate structured motifs via positional joins. The pos-list of each component is simply the set of positions (1st element of the quadruples) under it. For example, P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(M1) = {1, 5, 10, 21, 25, 32}. As before the joins proceed from M3 to M1, i.e., first we obtain the pos-list for M2 [0,9] M3, and then for M1 [0, 5] as head and M2 [0, 9] M3 as the tail. At any stage, the head motif's pos-list corresponds to the full list of positions shown, whereas the tail's pos-list consists only of the shaded positions. For illustration, we add a link between any two positions, x and y, in adjacent columns if their difference (d = y - x - 1) falls within the corresponding gap range. If the current partial motif starting at position x also satisfies the corresponding (partial) score threshold, the link is solid; otherwise, the link is dashed. When joining M2 as the head and M3 as the tail with a gap of [0, 9], the positions x ∈ P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(M2) that satisfy the gap constraint are 10, 19 and 25 (marked in bold), which thus form the pos-list of M2 [0, 9] M3. We then check whether each occurrence satisfies the corresponding structured score threshold. Figure 9(d) shows the minimum partial scores required for each component suffix. For example the threshold λn (M2 [0, 9] M3) = 5.87. Checking the score for CATACG[0,9]TTACG, we get 2.44 + 3.48 = 5.92 > 5.87, so we keep it. The other occurrences also satisfy the partial score threshold. Next we join P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(M1) with P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(M2 [0, 9] M3) to get the valid positions 1, 5, 10 and 21. When checking with the score threshold, we find that the score of CATG[0,5]CATACG[0,9]TTACG is 1.05 + 5.87 = 6.97 < 8.60 = λn, so we discard this motif (as a result the corresponding link between the positions is dashed.) Finally, we get P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqqGqbauaaa@3786@(M1 [0, 5] M2 [0, 9] M3) = {1, 5, 21} as the pos-list for the full structured motif. Full position recovery Once the pos-list for the profile ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ has been computed, we can then recover the full positions from each start position, using the approach already outlined for the structured pattern search, i.e., we use an index N MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFneVtaaa@383B@i for each component to speed up the full position recovery. For example, in Figure 9(e), to recover the full position for the occurrence starting at position 1, we follow index 1 to get position 10 in M2's pos-list, to obtain ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {(1, 10)}. Then we follow index 1 to position 20 in M3's pos-list, to get ℱ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFXeIraaa@3787@ = {(1,10, 20)} as a full position and its corresponding sequence is AACG[5]CATGCT[4]ATACG. By continuing this process, we can get the other two full positions, as shown in Figure 9(f). The complete SMOTIF algorithm: complexity analysis The pseudo-code for the complete SMOTIF algorithm is shown in Figure 10. We distinguish three cases: the direct (or one-step) approach, and the two-step approach for structured pattern search are denoted as SMOTIF-1, and SMOTIF-2, respectively. The approach for structured profile search is called SMOTIF-P. Let n=∑S∈S|S| MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqWGUbGBcqGH9aqpdaaeqaqaaiabcYha8jabdofatjabcYha8bWcbaGaem4uamLaeyicI4mcdaGae8NeXpfabeqdcqGHris5aaaa@4375@ be the total length over all sequences in S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@, let and m = maxi {|Mi|} be the maximum component length, and assume that all patterns/profiles are over ΣDNA. In Figure 10, line 2 takes O (|ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@| · |ΣDNA|) time and space to compute the weighted profile and O (|ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@|) time/space to compute the (core) score thresholds. Line 4 reads one segment each time and takes O (n) time and space over all sequences. Line 7 also takes O (n) time and space since SMOTIF-1 scans the input sequences only once to create the pos-lists. For SMOTIF-2 with exact matching, line 9 builds the suffix tree in O (n) time and space. In line 10, to get the occurrences for all components, takes time O (km) to search in the suffix tree, and in the worst case, O (n) time/space to extract all the occurrences. To sort the occurrences takes O (n log n) using comparison-based sorting, or O (n) time using counting sort, for example. The total time is then O (km + n log n) (or O (km + n) if using counting sort). For SMOTIF-2 with approximate matching, line 11 applies Sellers' dynamic programming algorithm [26] which takes O (|ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@| · n) time/space over all components. For SMOTIF-P, line 12 considers O (n) starting positions and the scoring takes total time O (|ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@| · n) over all components. Line 13 enumerates all the possible sub-motifs of ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ with q missing components. The number of sub-motifs to be searched for is T=∑i=k−qk(ki) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGubavcqGH9aqpdaaeWaqaamaabmaabaqbaeqabiqaaaqaaiabdUgaRbqaaiabdMgaPbaaaiaawIcacaGLPaaaaSqaaiabdMgaPjabg2da9iabdUgaRjabgkHiTiabdghaXbqaaiabdUgaRbqdcqGHris5aaaa@3CAC@ with i ∈ [k - q, k] simple motifs, which in the worst case is T = 2k - 1 (when q = k - 1). Since the positional joins take linear time in the length of the pos-lists (the length is O (n) in the worst case), the time for pos-list joins is O (|ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@| · n) for SMOTIF-1, and O (kn) for SMOTIF-2 and SMOTIF-P, when there are no missing components; these times have to be multiplied by T when there are q missing components. The number of final occurrences of the structured motif in the sequences is given as O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFoe=taaa@383D@. Lines 14–15 scan a region of span L from each starting position, taking O (L · |O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFoe=taaa@383D@|) time over all occurrences. Note that in the worst case, for any sequence S ∈ S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@, the number of full occurrences of the motif can be |O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFoe=taaa@383D@| = O(∏i=1k−1(ui−li+1)) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGpbWtcqGGOaakdaqeWaqaaiabcIcaOiabdwha1naaBaaaleaacqWGPbqAaeqaaOGaeyOeI0IaemiBaW2aaSbaaSqaaiabdMgaPbqabaGccqGHRaWkcqaIXaqmcqGGPaqkcqGGPaqkaSqaaiabdMgaPjabg2da9iabigdaXaqaaiabdUgaRjabgkHiTiabigdaXaqdcqGHpis1aaaa@426A@. Overall, the total time for SMOTIF is O (|ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@| · |ΣDNA| + n · (|ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@| + k) + L · |O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFoe=taaa@383D@|), except when we use a comparison based sorting in SMOTIF-2 exact matching case, in which case the second term becomes n · (|ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@| + k + log n). Figure 10 SMOTIF Algorithm. Results and discussion Performance comparison We have implemented the SMOTIF algorithm in standard C++. We compare our results with SMARTFINDER, the best previous algorithm for structured motif search. For fair comparison, the suffix tree used in SMOTIF-2 for finding the pos-list of simple motifs is the same as the one used in SMARTFINDER, namely the lazy mode suffix tree [11], and we apply Sellers' dynamic programming algorithm [26] for approximate matching. The programs were compiled with g++ v3.2.2 at the optimization level 3 (-O3). Unless indicated otherwise, we did the experiments on an Apple G5 with dual 2.7Ghz processors and 4GB memory running Mac OS X; the timings reported are total times for all steps of the algorithms; all our experiments use exact matching for the simple motifs, and we report the full position for the occurrences. SMOTIF: parameter settings In the first set of experiments we used the 5 chromosomes of Arabidopsis thaliana as our sequence set. These five chromosomes have lengths 29M, 19M, 22.7M, 16.9M and 25.7M base pairs, respectively. The structured motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ to search for includes a well conserved feature of a Copia retrotransposon [6,7], shown in Table 7. Table 7 Real Motifs Copia Motif TNGA [12,14] TWNYTNNA [19,21] TNTMYRT [4,6] WNCCNNNNRG [72,95] TGNNA [100,125] TNTANRTNRAYGA Motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@1 HNGTNYDNHDNBTNNDNA [0,3] YNHTNYRHGGNBTNAR [0,2] ARDBNBH Motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@2 TNVRNKAYNKNVVNDV [9,11] HNRR [6,8] YDNNVNNV [9,13] HB [4,5] TNNNNRBNYDBDNNRR Motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@3 DNNNNDRYW [2,5] DS [6,7] HMM [1,2] TNDB Motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@4 DBNNNND [48,102] KRRYMYNNNMRNHYNDVNYAYVH [7,10] VNNNYNNND [34,63] WD [2,8] KNNH [3,5] VNDDRNNNNNNHVNNNNNNNHHH Figure 11 shows how SMOTIF performs on the A. thaliana chromosome 1, while searching for the Copia retrotransposon. We study the impact of allowing 0, 1 or 2 missing components out of the 6 simple motifs in the Copia structured motif. Figure 11(a) and 11(b) show the effect of sequence segmentation on SMOTIF-1 and SMOTIF-2, respectively. The x-axis shows the length of the segments, whereas the y-axis shows the time. The rightmost end point on the x-axis shows the case when the sequence is not segmented. For these experiments we used the IUPAC pos-list approach. The different curves in each figure show the effect of 0,1, or 2 missing components. Both figures suggest the best segment length is 10,000 base pairs. At that segment length, sequence segmentation can speed up the search around 2 to 3 times for SMOTIF-1 (depending on the number of missing components) and 4 times for SMOTIF-2. In the following experiments, we use 10,000 as the default segmentation length. Figure 11 SMOTIF Performance: Comparing SMOTIF-1 and SMOTIF-2. The figure shows how SMOTIF performs while searching for the Copia retrotransposon on Chromosome 1 from A. thaliana. (a) and (b) show the effect of sequence segmentation on SMOTIF-1 and SMOTIF-2, respectively. (c) and (d) compare the time and memory usage, respectively, for SMOTIF-1, when we use the recomputed or indexed full position recovery (e) compares the DNA versus IUPAC pos-lists for handling IUPAC symbols in SMOTIF-1. (f) shows the time for SMOTIF-1 and SMOTIF-2 on each of the 5 chromosomes of A. thaliana, with no missing components. Figure 11(c) and 11(d) compare the time and memory usage for SMOTIF-1 when we use the recomputed or indexed full position recovery. We find that the indexed approach is about 2 times faster than recomputing the full positions, and at the same time it can consume up to 20 times less memory! The effects are more pronounced for more missing components. Henceforth, we use the indexed approach to full position recovery. Figure 11(e) compares the two methods for handling IUPAC symbols in SMOTIF-1, namely DNA pos-lists or IUPAC pos-lists. We find that there is not much difference between the two when 0 or 1 missing components are allowed; but for 2 missing components, IUPAC pos-lists have a slight advantage. In terms of memory space, even though the IUPAC pos-lists approach stores the pos-lists for each distinct symbol that appears in the structured motif, since only one segment is processed at one time, the space utilization of the two approaches is comparable. For example, with no missing components, the IUPAC and DNA pos-lists consume 2.98MB and 2.82MB memory, respectively. Henceforth, we use the IUPAC pos-lists approach. Figure 11(f) shows the time for SMOTIF-1 and SMOTIF-2 on each of the 5 chromosomes of A. thaliana, with no missing components. The chromosomes are arranged by increasing length on the x-axis. We find that the search time increases linearly with the lengths of the sequences. We also observe that the direct approach, SMOTIF-1, outperforms the two-step approach, SMOTIF-2, when searching for the Copia retrotransposon. SMOTIF and SMARTFINDER: comparison Comparison on A. thaliana Figure 12(a) and 12(b) compare time and memory usage, respectively, for SMOTIF-1, SMOTIF-2 and SMARTFINDER, when searching for the Copia retrotransposon in chromosome 1 of A. thaliana. We can see that SMOTIF-2 is around 5 times faster and takes around 8 times less memory than SMARTFINDER. Their running time and memory usage increase slowly with the number of missing components. This is because in both approaches, the simple motif search step is the same for different number of missing components and usually takes most of the time and memory. SMOTIF-1 always outperforms SMARTFINDER, both in time and memory usage. SMOTIF-1 is more than 7 times faster and takes 100 times less memory than SMARTFINDER! Its time increases linearly with the number of missing components. While SMOTIF-1 is faster when there are no missing components, SMOTIF-2 does better when there are two missing components. This is because SMOTIF-1 does the positional joins on the pos-lists of individual symbols, rather than simple motifs, so over all the sub-motifs of the structured motif, the pos-lists of simple motifs may be redundantly computed several times in SMOTIF-1, whereas these are computed only once in SMOTIF-2. Thus the time of SMOTIF-1 varies depending on the number of missing components. However, since we keep one pos-list per DNA/IUPAC symbol, the memory usage remains almost unchanged for SMOTIF-1 algorithm. Figure 12 SMOTIF and SMARTFINDER Comparison: Copia Motif. The figure compares SMOTIF-1, SMOTIF-2 and SMARTFINDER, when searching for the Copia retrotransposon in chromosome 1 of A. thaliana. (a) and (b) compare time and memory usage. (c) compares the constraint graph approach of SMARTFINDER with the positional joins in SMOTIF. To directly evaluate SMARTFINDER's constraint graph approach with our positional join approach, in Figure 12(c), we compare the time for the second step of SMOTIF-2 and SMARTFINDER, after the suffix tree is built in the first step. We observe that SMOTIF-2 is orders of magnitude faster than SMARTFINDER in finding all the occurrences that satisfy the structured gap constraints depending on the number of missing components allowed. We conclude that doing positional joins on the inverted index is an efficient way of enumerating all occurrences. We also multiply aligned 36 A. thaliana LTR retrotransposons from Repbase Update [2] database, which belong to Copia repeat class, and have reverse transcriptase as the keyword. We then extracted four conserved features from the alignment results, shown as ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@i (i ∈ [1, 4]) in Table 7. We searched chromosome 1 of A. thaliana for the four extracted motifs using SMARTFINDER, SMOTIF-1 and SMOTIF-2, respectively. Table 8 shows the number of occurrences |O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFoe=taaa@383D@| found, and the search times. We can observe that since we allow no missing components, SMOTIF-1 can be 4 to 5 times faster than SMOTIF-2, and 4 to 18 times faster than SMARTFINDER. Note also that for the longest motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@4, SMARTFINDER ran out of memory. Table 8 Search Time for Several Real Motifs ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ |O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFoe=taaa@383D@| SMARTFINDER SMOTIF-1 SMOTIF-2 1 27 17.44s 3.98s 3.80s 2 446 85.68s 4.98s 19.73s 3 507911 84.11s 4.69s 21.98s 4 283676 Out of memory 10.61s 50.86s Searching motifs with long gaps One application of SMOTIF is to find structured motifs with long gaps. For example, we extracted the motif DNNNNDRYW [2578, 4202]RNNGVHVY, from the same 36 LTRs of A. thaliana mentioned above. Here we retain only the first and last conserved components in the resulting alignment of the 36 sequences. Note the relatively long gap ranges, with minimum gap l = 2578 and maximum gap u = 4202. SMOTIF was able to extract the approximately 83 million full positions, corresponding to 3 million start positions, in just 35.75s (SMOTIF-1) and 15.72s (SMOTIF-2). Comparison on random motifs Here we used chromosome 20 of Homo Sapiens as the sequence; it has length 61M base pairs. We generate 100 random structured motifs in the ΣIUPAC alphabet, with k ∈ [3,8] simple motifs of length l ∈ [5,10] (k and l are selected uniformly at random within the given ranges). The gap range between each pair of simple motifs is a random sub-interval of [-5, 100]. Note that the negative minimum gap shows that SMOTIF can mine overlapping simple motifs. Here we also compare the structured profile search approach SMOTIF-P, as follows: for each random motif, we form a profile by first expanding the IUPAC symbols into their corresponding DNA symbols and assign them a random probability of occurrence which accounts for 90% of the share, whereas the other DNA symbols randomly share in the remaining 10%. We use SMOTIF-P to search for the profiles with 2 as the number of core positions in each simple motif, λc = 0.1 as the core score threshold and λ = 0.6 as the total score threshold. We use random motifs mainly to demonstrate the effects of various parameters on SMOTIF and SMARTFINDER. Figure 13(a)–(d) show the results. Here we do not allow missing components. As noted before, we may find overlapping occurrences if a negative gap is present in a motif. Figure 13(a) shows how the running time varies with the sum of the number of occurrences of the simple motifs in each of the 100 random motifs. For clarity, each point reflects the average time for the number of occurrences in the given range on the x-axis. For example, the first point on the x-axis [0, 1) corresponds to the case when there are between 0 and 1 million occurrences found. The general trend is that it takes more time as the number of occurrences increases. Figure 13(b) shows the time with respect to the number of occurrences of the whole structured motif (again, for clarity, only average times are plotted for occurrences in the given ranges in the x-axis). We observe that the time increases slightly with increase in the occurrences. In general, the times are more sensitive to the number of intermediate (simple) occurrences. Figure 13(c) shows the effect of the number of simple components in the structured motif. Each point shows the average time over all motifs having the given number of simple motifs. Here again the time increases with increasing components. Finally Figure 13(d) shows the impact of the number of IUPAC symbols in the structured motifs; the trend being that the more the symbols the more time it takes to search. We also observe that the approaches scale linearly, on average, with respect to the different parameters. Also SMOTIF remains about 5–10 times faster than SMARTFINDER over all these experiments. Figure 13 SMOTIF and SMARTFINDER Comparison: Random Motifs. The figure compares SMOTIF-1, SMOTIF-2 and SMARTFINDER, when searching for 100 randomly generated structured motifs in chromosome 20 of Homo sapiens. (a) shows how the running time varies with the sum of the number of occurrences of the simple motifs in each of the 100 random motifs. (b) shows the time with respect to the number of occurrences of the whole structured motif. (c) shows the effect of the number of simple motif components in the structured motif. (d) shows the impact of the number of IUPAC symbols in the structured motifs. Table 9 shows the mean and variance of the search times over all the 100 structured motifs. It also shows the time for finding only the start positions or the full positions for SMOTIF. Overall, for these random motifs, we find that on average SMOTIF-1 is the fastest, SMOTIF-2 and SMOTIF-P are comparable, and all three outperform SMARTFINDER by a factor of 4 to 6. Table 9 Random Motifs: Mean and Variance Algorithm Mean(s) Variance (s) SMARTFINDER 44.42 24.85 SMOTIF-1 (full) 6.97 1.45 SMOTIF-1 (start) 6.93 1.46 SMOTIF-2 (full) 10.83 5.07 SMOTIF-2 (start) 10.81 5.07 SMOTIF-P (full) 9.67 2.95 SMOTIF-P (start) 9.66 2.97 full gives the time for full position recovery, whereas start gives the time for reporting only the start positions. It is interesting to note that SMOTIF is more stable than SMARTFINDER: SMOTIF-P has around 8 times less variance than SMARTFINDER, SMOTIF-2 has around 5 times less variance than SMARTFINDER, whereas SMOTIF-1 has around 17 times less variance than SMARTFINDER. Note also that the overhead in recovering the full positions from the start positions is negligible. Application: composite regulatory patterns The complex transcriptional regulatory network in Eukaryotic organisms usually requires interactions of multiple transcription factors. A potential application of SMOTIF is to search for such composite regulatory binding sites in DNA sequences. We took two such transcription factors, URS1H and UASH, that are known to cooperatively regulate 11 yeast genes [28]. These 11 genes are also listed in SCPD [1], the promoter database of Saccharomyces cerevisiae. In 10 of those genes the URS1H binding site appears downstream from UASH; in the remaining one (HOP1) the binding sites are reversed. We took the binding sites for the 10 genes, and after their multiple alignment, we obtained the composite motif NNDTBNGDWGDNNDH[5,179]WBRGCSGCYVW, where we represent each column in the alignment with the IUPAC symbol corresponding to the bases that appear at that position. We also extracted the profile for these 10 binding sites. Table 10 shows the binding sites for the 10 genes, their alignment, and the start positions and the distances between the sites (the difference of start positions). The smallest distance is 20 and the largest is 194. Since these are start positions, the variable gap range is obtained by subtracting the length (15) of UASH to obtain l = 20 – 15 = 5 and u = 194 – 15 = 179. Notice also how the alignment preserves the highly conserved GCSGC region in URS1H. Table 10 UASH and URS1H Binding Sites Genes UASH URS1H Distance Site Pos Site Pos ZIP1 GATTCGGAAGTAAAA -42 ==TCGGCGGCTAAAT -22 20 MEI4 TCTTTCGGAGTCATA -121 ==TGGGCGGCTAAAT -98 23 DMC1 TTGTGTGGAGAGATA -175 AAATAGCCGCCCA== -143 32 SPO13 TAATTAGGAGTATAT -119 AAATAGCCGCCGA== -100 19 MER1 GGTTTTGTAGTTCTA -152 TTTTAGCCGCCGA== -115 37 SPO16 CATTGTGATGTATTT -201 ==TGGGCGGCTAAAA -90 111 REC104 CAATTTGGAGTAGGC -182 ==TTGGCGGCTATTT -93 89 RED1 ATTTCTGGAGATATC -355 ==TCAGCGGCTAAAT -167 188 REC114 GATTTTGTAGGAATA -288 ==TGGGCGGCTAACT -94 194 MEK1 TCATTTGTAGTTTAT -233 ==ATGGCGGCTAAAT -150 83 Motif NNDTBNGDWGDNNDH ==WBRGCSGCYVW== [5,179] We then searched for the structured motif in the upstream regions of all 5873 genes in the yeast genome. We used the -800 to -1 upstream regions, and truncated the segment if it overlaps with an upstream open reading frame (ORF). As a result, 5794 sequences with average length of 497 bases are left. By searching for the IUPAC pattern, we found 65 occurrences, including the 10 originally known sites, within 1 second. By searching for the profile with 5 as the number of core positions in each simple motif, λc = 0.6 as the core score threshold and λ = 0.8 as the total score threshold, we found 56 occurrences in 0.18 seconds. For each occurrence, we then extracted its actual sequence segment in the matching upstream regions. Since the structured motif represented by IUPAC symbols may be too general, for each matching segment, we calculated its hamming distance to one of the 10 known binding sites. We then selected an occurrence as a possibly new binding site if the minimum hamming distance to any of the 10 known sites is within a given maximum threshold value. Table 11 lists the 12 newly found occurrences in the entire yeast genome (upstream regions) using a hamming distance threshold of 5. The sites discovered using both pattern and profile search are listed. These new occurrences could be putative binding sites for the two transcription factors UASH and URS1H. Table 11 Potential Binding Sites Genes UASH URS1H Hamming Distance Site Pos Site Pos MES1 GATTTTGAAGTAGGA -438 TTAGCCGCCGA -246 5:MER1 YJL045W TTTTGTGAAGAGATA -407 TTAGCCGCTCA -273 4:DMC1 HSP60 GTTTTTGTAGGTATA -329 ATAGCCGCCCA -252 5:MER1 SPO1 ATTTTTGAAGTTAAC -192 TCAGCGGCTAT -90 5:RED1 MEK1 TCATTTGTAGTTTAT -233 TCGGCGGCTAT -136 3:MEK1 YIG1 ATTTCCGGAGTTTTC -183 TCGGCGGCTAT -140 5:RED1 †AGP1 CCTTTTGATGACTTT -786 TCGGCGGCTAA -699 5:SPO16 †AGPl CCTTTTGATGACTTT -786 TCGGCGGCTAA -668 5:SPO16 †REC114 CATTTTGGTGGGTTC -158 TGGGCGGCTAA -94 5:SPO16 †GNTl TCATTTGGAGAATAT -340 ATAGCCGCCAT -299 5:SPO13 ‡MEK1 TTATATGCAGTATAT -276 ATGGCGGCTAA -150 4:MEK1 ‡MMS1 AACTCTGTAGTTATA -643 TGGGCGGCTAA -497 5:REC114 For each occurrence we give the gene names corresponding to the upstream region, the sites and positions for UASH and URS1H, and also the hamming distance and the closest known gene with the cooperative binding sites. For example, 5:SPO16 in the first row means that the hamming distance between AGP1 and SPO16 was 5. †: found only by IUPAC pattern search, ‡: found only by profile search. Upon further analysis, we found that in fact, the new occurrence in MEK1 (at positions -233,-136) that we found is also listed in the SCPD database as a binding site. SCPD lists one site for UASH at position -233, and two sites for URS1H at positions -136 and -150. To construct the motif, we had used -150 as the site for URS1H, without knowledge of the other site. SMOTIF was thus able to automatically find the other site based on the extracted motif! For REC114, we also found another occurrence at positions -158 (UASH) and -94 (URS1H). However, this is not reported in SCPD. To further analyze the remaining new occurrences, we consulted the SGD (Saccharomyces Genome Database) Gene Ontology Term Finder [29] to find the inter-relationships between the genes. The first three rows of Table 12 show the significant GO terms (biological process or molecular function) that are common to the genes corresponding to a new occurrence and its closest (known) gene. The rest of the table shows the significant terms among the 18 genes. These results indicate that at least some of the new occurrences (such as SPO1, HSP60, MES1, and GNT1) have a potential to be binding sites since they share some significant processes with the known sites' genes. Out of these SPO1 has the highest potential to be a new binding site, since it is known that UASH and URS1H are involved in early meiotic expression, during sporulation [28]. Table 12 shows that SPO1 shares meiosis and M phase of meiotic cell cycle with the rest of the genes. After searching for SPO1 in SGD database, we found that SPO1 is a transcriptional regulator involved in sporulation, and required for middle and late meiotic expression. This increases our confidence that SPO1 has high potential to be a previously unknown binding site. Table 12 Genes and Significant Gene Ontology (GO) Terms Genes Significant GO Terms p-value MES1, MER1 RNA metabolism 5.7e-3 HSP60, MER1 nucleic acid binding 7.9e-3 SPO1, RED1 M phase-meiotic cell cycle, meiotic cell cycle, meiosis, M phase 1.1e-3 ‡ MMS1, REC114 DNA recombination, DNA metabolism 6.0e-3 MES1, REC114, † GNT1, MEK1, MEI4, DMC1, MER1, REC104 biopolymer metabolism, macromolecule metabolism 2.3e-4 REC114, SPO1, MEK1, ZIP1, MEI4, DMC1, SPO13, MER1, REC104, RED1, HOP1 meiosis, M phase of meiotic cell cycle, meiotic cell cycle, M phase, cell cycle 1.6e-14 HSP60, DMC1, RED1, HOP1 DNA binding 6.7e-7 HSP60, DMC1, RED1 structure-specific DNA binding 3.1e-8 HSP60, DMC1 single-stranded DNA binding 3.7e-6 MEI4, DMC1, REC104, REC114, ‡ MMS1 DNA recombination, DNA metabolism 2.8e-6 MEI4, DMC1, MER1, REC104, REC114, MEK1, MES1, ‡ MMS1 biopolymer metabolism, macromolecule metabolism 2.3e-4 † : found only by IUPAC pattern. search, ‡ : found only by profile search. Finally, since we knew that in gene HOP1, the URS1H binding site appears upstream from UASH, we wanted to see if we could extract the "reversed" binding site. We search for the original and the reversed motifs using a hamming threshold of 6. We found 34 new binding sites where UASH can appear either up-or down-stream from URS1H. Among these we found two possible potential binding sites for the gene HOP1, with UASH at position -201 and URS1H at positions -534 and -175. The former pair (-201,-534) is in fact a known binding site as reported in the SCPD database [1]. This once again showcases the ability of SMOTIF to find potential new binding sites. Conclusion We introduced SMOTIF, a fast and efficient algorithm to search structured pattern and profile motifs in biological sequences. We showed its applications in searching for composite regulatory patterns, long terminal repeat retrotransposons, and for searching long range motifs. SMOTIF is also computationally more efficient than previous state-of-the-art methods like SMARTFINDER [6]. In biosequence analysis there are four related structured motif problems depending on whether the simple motifs and gap ranges in the structured motif are known or not: (i) Structured motif search [4-6]: all simple motifs and gap ranges are known; (ii) Structured motif extraction [30-32]: all simple motifs are unknown and all gap ranges are known; (iii) Extended structured motif search: all simple motifs are known and all gap ranges are unknown; and (iv) Extended structured motif extraction: all simple motifs and gap ranges are unknown. In this paper we tackled problem (i). A companion paper [33] tackles problem (ii). In the future, we plan to develop efficient algorithms for the other two motif problems as well. Authors' contributions All authors contributed equally to this work. Acknowledgements This work was supported in part by NSF CAREER Award IIS-0092978, DOE Career Award DE-FG02-02ER25538, and NSF grants EIA-0103708 & EMT-0432098. We thank the anonymous reviewers for their many helpful suggestions.

Document structure show

Annnotations TAB TSV DIC JSON TextAE

last updated at 2021-06-04 00:21:51 UTC

  • Denotations: 0
  • Blocks: 0
  • Relations: 0