PubMed:10542237 JSONTXT 20 Projects

Annnotations TAB TSV DIC JSON TextAE-old TextAE

Id Subject Object Predicate Lexical cue
BEL:20059512 0-1960 p(MGI:Ppara) decreases bp(GOBP:"inflammatory response") denotes Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. Interleukin-6 (IL-6) is a pleiotropic cytokine, whose plasma levels are elevated in inflammatory diseases such as atherosclerosis. We have previously reported that peroxisome proliferator-activated receptor alpha (PPARalpha) ligands (fibrates) lower elevated plasma concentrations of IL-6 in patients with atherosclerosis and inhibit IL-1-stimulated IL-6 secretion by human aortic smooth muscle cells (SMC). Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion. Furthermore, fibrate treatment represses IL-6 mRNA levels in LPS-stimulated aortas of PPARalpha wild-type, but not of PPARalpha-null mice, demonstrating a role for PPARalpha in this fibrate action. In human aortic SMC, fibrates inhibit IL-1-induced IL-6 gene expression. Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter. Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter. This transcriptional interference occurs independent of the promoter context as demonstrated by cotransfection experiments using PPARalpha, p65, and c-Jun Gal4 chimeras. Overexpression of the transcriptional coactivator cAMP-responsive element-binding protein-binding protein (CBP) does not relieve PPARalpha-mediated transcriptional repression of p65 and c-Jun. Finally, glutathione S-transferase pull-down experiments demonstrate that PPARalpha physically interacts with c-Jun, p65, and CBP. Altogether these data indicate that fibrates inhibit the vascular inflammatory response
BEL:20024444 0-2106 a(CHEBI:lipopolysaccharide) increases p(MGI:Il6) denotes Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. Interleukin-6 (IL-6) is a pleiotropic cytokine, whose plasma levels are elevated in inflammatory diseases such as atherosclerosis. We have previously reported that peroxisome proliferator-activated receptor alpha (PPARalpha) ligands (fibrates) lower elevated plasma concentrations of IL-6 in patients with atherosclerosis and inhibit IL-1-stimulated IL-6 secretion by human aortic smooth muscle cells (SMC). Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion. Furthermore, fibrate treatment represses IL-6 mRNA levels in LPS-stimulated aortas of PPARalpha wild-type, but not of PPARalpha-null mice, demonstrating a role for PPARalpha in this fibrate action. In human aortic SMC, fibrates inhibit IL-1-induced IL-6 gene expression. Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter. Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter. This transcriptional interference occurs independent of the promoter context as demonstrated by cotransfection experiments using PPARalpha, p65, and c-Jun Gal4 chimeras. Overexpression of the transcriptional coactivator cAMP-responsive element-binding protein-binding protein (CBP) does not relieve PPARalpha-mediated transcriptional repression of p65 and c-Jun. Finally, glutathione S-transferase pull-down experiments demonstrate that PPARalpha physically interacts with c-Jun, p65, and CBP. Altogether these data indicate that fibrates inhibit the vascular inflammatory response via PPARalpha by interfering with the NF-kappaB and AP-1 transactivation capacity involving direct protein-protein interaction with p65 and c-Jun
BEL:20033764 0-2106 complex(p(HGNC:FOS),p(HGNC:JUN)) increases r(HGNC:IL6) denotes Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. Interleukin-6 (IL-6) is a pleiotropic cytokine, whose plasma levels are elevated in inflammatory diseases such as atherosclerosis. We have previously reported that peroxisome proliferator-activated receptor alpha (PPARalpha) ligands (fibrates) lower elevated plasma concentrations of IL-6 in patients with atherosclerosis and inhibit IL-1-stimulated IL-6 secretion by human aortic smooth muscle cells (SMC). Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion. Furthermore, fibrate treatment represses IL-6 mRNA levels in LPS-stimulated aortas of PPARalpha wild-type, but not of PPARalpha-null mice, demonstrating a role for PPARalpha in this fibrate action. In human aortic SMC, fibrates inhibit IL-1-induced IL-6 gene expression. Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter. Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter. This transcriptional interference occurs independent of the promoter context as demonstrated by cotransfection experiments using PPARalpha, p65, and c-Jun Gal4 chimeras. Overexpression of the transcriptional coactivator cAMP-responsive element-binding protein-binding protein (CBP) does not relieve PPARalpha-mediated transcriptional repression of p65 and c-Jun. Finally, glutathione S-transferase pull-down experiments demonstrate that PPARalpha physically interacts with c-Jun, p65, and CBP. Altogether these data indicate that fibrates inhibit the vascular inflammatory response via PPARalpha by interfering with the NF-kappaB and AP-1 transactivation capacity involving direct protein-protein interaction with p65 and c-Jun
BEL:20041950 0-2106 p(HGNC:FOS) increases r(HGNC:IL6) denotes Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. Interleukin-6 (IL-6) is a pleiotropic cytokine, whose plasma levels are elevated in inflammatory diseases such as atherosclerosis. We have previously reported that peroxisome proliferator-activated receptor alpha (PPARalpha) ligands (fibrates) lower elevated plasma concentrations of IL-6 in patients with atherosclerosis and inhibit IL-1-stimulated IL-6 secretion by human aortic smooth muscle cells (SMC). Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion. Furthermore, fibrate treatment represses IL-6 mRNA levels in LPS-stimulated aortas of PPARalpha wild-type, but not of PPARalpha-null mice, demonstrating a role for PPARalpha in this fibrate action. In human aortic SMC, fibrates inhibit IL-1-induced IL-6 gene expression. Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter. Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter. This transcriptional interference occurs independent of the promoter context as demonstrated by cotransfection experiments using PPARalpha, p65, and c-Jun Gal4 chimeras. Overexpression of the transcriptional coactivator cAMP-responsive element-binding protein-binding protein (CBP) does not relieve PPARalpha-mediated transcriptional repression of p65 and c-Jun. Finally, glutathione S-transferase pull-down experiments demonstrate that PPARalpha physically interacts with c-Jun, p65, and CBP. Altogether these data indicate that fibrates inhibit the vascular inflammatory response via PPARalpha by interfering with the NF-kappaB and AP-1 transactivation capacity involving direct protein-protein interaction with p65 and c-Jun
BEL:20044792 0-2106 p(HGNC:RELA) increases r(HGNC:IL6) denotes Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. Interleukin-6 (IL-6) is a pleiotropic cytokine, whose plasma levels are elevated in inflammatory diseases such as atherosclerosis. We have previously reported that peroxisome proliferator-activated receptor alpha (PPARalpha) ligands (fibrates) lower elevated plasma concentrations of IL-6 in patients with atherosclerosis and inhibit IL-1-stimulated IL-6 secretion by human aortic smooth muscle cells (SMC). Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion. Furthermore, fibrate treatment represses IL-6 mRNA levels in LPS-stimulated aortas of PPARalpha wild-type, but not of PPARalpha-null mice, demonstrating a role for PPARalpha in this fibrate action. In human aortic SMC, fibrates inhibit IL-1-induced IL-6 gene expression. Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter. Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter. This transcriptional interference occurs independent of the promoter context as demonstrated by cotransfection experiments using PPARalpha, p65, and c-Jun Gal4 chimeras. Overexpression of the transcriptional coactivator cAMP-responsive element-binding protein-binding protein (CBP) does not relieve PPARalpha-mediated transcriptional repression of p65 and c-Jun. Finally, glutathione S-transferase pull-down experiments demonstrate that PPARalpha physically interacts with c-Jun, p65, and CBP. Altogether these data indicate that fibrates inhibit the vascular inflammatory response via PPARalpha by interfering with the NF-kappaB and AP-1 transactivation capacity involving direct protein-protein interaction with p65 and c-Jun
BEL:20081100 195-2106 p(HGNC:IL6) increases bp(GOBP:"inflammatory response") denotes IL-6) is a pleiotropic cytokine, whose plasma levels are elevated in inflammatory diseases such as atherosclerosis. We have previously reported that peroxisome proliferator-activated receptor alpha (PPARalpha) ligands (fibrates) lower elevated plasma concentrations of IL-6 in patients with atherosclerosis and inhibit IL-1-stimulated IL-6 secretion by human aortic smooth muscle cells (SMC). Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion. Furthermore, fibrate treatment represses IL-6 mRNA levels in LPS-stimulated aortas of PPARalpha wild-type, but not of PPARalpha-null mice, demonstrating a role for PPARalpha in this fibrate action. In human aortic SMC, fibrates inhibit IL-1-induced IL-6 gene expression. Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter. Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter. This transcriptional interference occurs independent of the promoter context as demonstrated by cotransfection experiments using PPARalpha, p65, and c-Jun Gal4 chimeras. Overexpression of the transcriptional coactivator cAMP-responsive element-binding protein-binding protein (CBP) does not relieve PPARalpha-mediated transcriptional repression of p65 and c-Jun. Finally, glutathione S-transferase pull-down experiments demonstrate that PPARalpha physically interacts with c-Jun, p65, and CBP. Altogether these data indicate that fibrates inhibit the vascular inflammatory response via PPARalpha by interfering with the NF-kappaB and AP-1 transactivation capacity involving direct protein-protein interaction with p65 and c-Jun
BEL:20070184 588-791 tscript(p(MGI:Ppara)) decreases bp(GOBP:"inflammatory response") denotes Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion
BEL:20070184 588-791 tscript(p(MGI:Ppara)) decreases bp(GOBP:"inflammatory response") denotes Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion
BEL:20070386 588-791 tscript(p(MGI:Ppara)) decreases sec(p(MGI:Il6)) denotes Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion
BEL:20070386 588-791 tscript(p(MGI:Ppara)) decreases sec(p(MGI:Il6)) denotes Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion
BEL:20066476 1064-1179 tscript(p(HGNC:RELA)) increases r(HGNC:IL6) denotes Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter
BEL:20066476 1064-1179 tscript(p(HGNC:RELA)) increases r(HGNC:IL6) denotes Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter
BEL:20065976 1064-1179 tscript(p(HGNC:JUN)) increases r(HGNC:IL6) denotes Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter
BEL:20066362 1181-1377 tscript(p(HGNC:PPARA)) decreases tscript(p(HGNC:JUN)) denotes Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter
BEL:20066366 1181-1377 tscript(p(HGNC:PPARA)) decreases tscript(p(HGNC:RELA)) denotes Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter
BEL:20066362 1181-1377 tscript(p(HGNC:PPARA)) decreases tscript(p(HGNC:JUN)) denotes Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter
BEL:20066366 1181-1377 tscript(p(HGNC:PPARA)) decreases tscript(p(HGNC:RELA)) denotes Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter
BEL:20066482 1181-1377 tscript(p(HGNC:RELA)) decreases tscript(p(HGNC:PPARA)) denotes Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter
BEL:20066482 1181-1377 tscript(p(HGNC:RELA)) decreases tscript(p(HGNC:PPARA)) denotes Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter
BEL:20065984 1181-1377 tscript(p(HGNC:JUN)) decreases tscript(p(HGNC:PPARA)) denotes Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter