> top > docs > PubMed:18536883

PubMed:18536883 JSONTXT

Acceptor substrate specificity of UDP-Gal: GlcNAc-R beta1,3-galactosyltransferase (WbbD) from Escherichia coli O7:K1. Most of the glycosyltransferases involved in O antigen biosynthesis have not yet been characterized. We recently demonstrated that the wbbD gene of the O7 lipopolysaccharide biosynthesis cluster in E. coli strain VW187 (O7:K1) encodes WbbD, a UDP-Gal: GlcNAcalpha-pyrophosphate-lipid beta1,3-Gal-transferase (EC 2.4.1., accession number AAC27537) that transfers the second sugar moiety in the assembly of the O7 repeating unit. The enzyme utilizes undecaprenol-pyrophosphate-GlcNAc as a natural acceptor substrate, but can also transfer Gal to GlcNAcalpha-PO(3)-PO(3)-(CH(2))(11)-O-phenyl (GlcNAc-PP-PhU). A number of acceptor substrate analogs have now been tested to further characterize the acceptor specificity of WbbD and to determine the roles of the pyrophosphate bond and the lipid moiety in the acceptor substrate. The enzyme was found to have a low activity with a substrate containing only one phosphate group directly alpha-linked to GlcNAc, and the enzyme was inactive when the phosphate was absent or further removed from the anomeric carbon of GlcNAc. Modifications of the lipid chain yielded substrates with variable activities. GlcNAc derivatives that were inactive as substrates did not inhibit WbbD suggesting that these compounds did not bind to the active site of the enzyme. The specificity of mammalian beta4-galactosyltransferase I has been compared to that of WbbD. The results indicate that the bacterial WbbD enzyme has a distinct specificity for GlcNAc-PP-lipid, and that WbbD recognition of its acceptor substrate is very different from that of the ubiquitous mammalian beta4-galactosyltransferase I. These studies help to understand mechanisms of O antigen synthesis, to develop methods to synthesize defined oligosaccharide structures and to develop specific O antigen inhibitors.

projects that include this document

Unselected / annnotation Selected / annnotation