Inhibition of EGF-mediated receptor activity and cell proliferation by HK1-ceramide, a stable analog of the ganglioside GM3-lactone.
Gangliosides have been described as modulators of growth factor receptor activity and subsequent cellular function. Due to the lower-pH environment found in tumor cells, ganglosides are thought to be formed (at least to some extent) into their lactone forms. The aim of the study was to analyze the mode of action of the lactone of the ganglioside GM3 on epidermal growth factor (EGF) signaling in human ovarial epidermoid carcinoma A431 cells and cell growth in human oral epidermoid carcinoma KB cells by applying the GM3 lactone analog HK1-ceramide 2, which is stable under hydrolytic conditions. Specific inhibition of EGF-dependent receptor tyrosine phosphorylation was observed by HK1-ceramide 2 at 25 microM, whereas GM3 showed a comparable inhibition at eightfold higher concentrations. In cells exposed to low pH, where GM3 is thought to form its lactone to a higher extent, addition of GM3 showed no further inhibitory effect on EGF-dependent receptor phosphorylation. Similarly to GM3, HK1-ceramide 2 does not affect binding of (125)I-EGF to the cell surface receptor. EGF-dependent growth of KB cells was also found to be inhibited by HK1-ceramide 2 at much lower concentrations compared to GM3. In conclusion, our results indicate that the GM3 lactone analog HK1-ceramide 2 is a specific inhibitor of EGF receptor function and is more potent in reducing EGF-dependent tyrosine phosphorylation of the receptor in A431 cells and in inhibiting EGF-dependent growth of KB cells compared to GM3.
|