> top > docs > PubMed:10069844

PubMed:10069844 JSONTXT

Further studies of the role of cyclic beta-glucans in symbiosis. An NdvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1-->3)-beta-glucosyl. The cyclic beta-(1-->3),beta-(1-->6)-D-glucan synthesis locus of Bradyrhizobium japonicum is composed of at least two genes, ndvB and ndvC. Mutation in either gene affects glucan synthesis, as well as the ability of the bacterium to establish a successful symbiotic interaction with the legume host soybean (Glycine max). B. japonicum strain AB-14 (ndvB::Tn5) does not synthesize beta-glucans, and strain AB-1 (ndvC::Tn5) synthesizes a cyclic beta-glucan lacking beta-(1-->6)-glycosidic bonds. We determined that the structure of the glucan synthesized by strain AB-1 is cyclodecakis-(1-->3)-beta-D-glucosyl, a cyclic beta-(1-->3)-linked decasaccharide in which one of the residues is substituted in the 6 position with beta-laminaribiose. Cyclodecakis-(1-->3)-beta-D-glucosyl did not suppress the fungal beta-glucan-induced plant defense response in soybean cotyledons and had much lower affinity for the putative membrane receptor protein than cyclic beta-(1-->3),beta-(1-->6)-glucans produced by wild-type B. japonicum. This is consistent with the hypothesis presented previously that the wild-type cyclic beta-glucans may function as suppressors of a host defense response.

projects that include this document

Unselected / annnotation Selected / annnotation