
PMC:7712180 / 85454-86842
Annnotations
LitCovid-PubTator
{"project":"LitCovid-PubTator","denotations":[{"id":"3004","span":{"begin":464,"end":466},"obj":"Gene"},{"id":"3005","span":{"begin":1203,"end":1215},"obj":"Gene"},{"id":"3006","span":{"begin":1130,"end":1132},"obj":"Gene"},{"id":"3007","span":{"begin":96,"end":100},"obj":"Species"},{"id":"3008","span":{"begin":202,"end":207},"obj":"Species"},{"id":"3009","span":{"begin":489,"end":494},"obj":"Species"},{"id":"3010","span":{"begin":498,"end":503},"obj":"Species"},{"id":"3011","span":{"begin":826,"end":829},"obj":"Species"},{"id":"3012","span":{"begin":833,"end":838},"obj":"Species"},{"id":"3013","span":{"begin":849,"end":854},"obj":"Species"},{"id":"3014","span":{"begin":858,"end":861},"obj":"Species"},{"id":"3015","span":{"begin":884,"end":889},"obj":"Species"},{"id":"3016","span":{"begin":894,"end":899},"obj":"Species"},{"id":"3017","span":{"begin":1014,"end":1018},"obj":"Species"},{"id":"3020","span":{"begin":1119,"end":1124},"obj":"Species"},{"id":"3021","span":{"begin":44,"end":47},"obj":"Species"},{"id":"3022","span":{"begin":596,"end":599},"obj":"Species"},{"id":"3023","span":{"begin":957,"end":961},"obj":"Gene"},{"id":"3024","span":{"begin":662,"end":668},"obj":"Chemical"},{"id":"3025","span":{"begin":749,"end":755},"obj":"Chemical"},{"id":"3026","span":{"begin":774,"end":780},"obj":"Chemical"},{"id":"3027","span":{"begin":969,"end":976},"obj":"Chemical"}],"attributes":[{"id":"A3004","pred":"tao:has_database_id","subj":"3004","obj":"Gene:170589"},{"id":"A3005","pred":"tao:has_database_id","subj":"3005","obj":"Gene:170589"},{"id":"A3006","pred":"tao:has_database_id","subj":"3006","obj":"Gene:170589"},{"id":"A3007","pred":"tao:has_database_id","subj":"3007","obj":"Tax:114727"},{"id":"A3008","pred":"tao:has_database_id","subj":"3008","obj":"Tax:9606"},{"id":"A3009","pred":"tao:has_database_id","subj":"3009","obj":"Tax:9606"},{"id":"A3010","pred":"tao:has_database_id","subj":"3010","obj":"Tax:9606"},{"id":"A3011","pred":"tao:has_database_id","subj":"3011","obj":"Tax:9823"},{"id":"A3012","pred":"tao:has_database_id","subj":"3012","obj":"Tax:9606"},{"id":"A3013","pred":"tao:has_database_id","subj":"3013","obj":"Tax:9606"},{"id":"A3014","pred":"tao:has_database_id","subj":"3014","obj":"Tax:9823"},{"id":"A3015","pred":"tao:has_database_id","subj":"3015","obj":"Tax:9823"},{"id":"A3016","pred":"tao:has_database_id","subj":"3016","obj":"Tax:9606"},{"id":"A3017","pred":"tao:has_database_id","subj":"3017","obj":"Tax:102793"},{"id":"A3020","pred":"tao:has_database_id","subj":"3020","obj":"Tax:9606"},{"id":"A3021","pred":"tao:has_database_id","subj":"3021","obj":"Tax:11320"},{"id":"A3022","pred":"tao:has_database_id","subj":"3022","obj":"Tax:11320"},{"id":"A3023","pred":"tao:has_database_id","subj":"3023","obj":"Gene:170589"},{"id":"A3024","pred":"tao:has_database_id","subj":"3024","obj":"MESH:D011134"},{"id":"A3025","pred":"tao:has_database_id","subj":"3025","obj":"MESH:D011134"},{"id":"A3026","pred":"tao:has_database_id","subj":"3026","obj":"MESH:D011134"},{"id":"A3027","pred":"tao:has_database_id","subj":"3027","obj":"MESH:D011134"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"Data from genome analysis of the past three IAV pandemics, except for the first identified 1918 H1N1 pandemic that remains a mystery, demonstrated that a pandemic emerged from viral reassortment with a human virus gene segment(s) and a nonhuman HA gene segment producing a major viral antigen [19]. Extensive studies on receptor binding specificities of IAVs from different hosts [19,256] have indicated that a nonhuman HA gene must acquire mutations to recognize α2,6Neu5Ac for efficient human-to-human transmission, leading to the development of several techniques for monitoring and assessing IAV pandemic potential, including a viral NA-based assay [257], a glycan microarray assay [258], an evanescent-field-activated fluorescence scanner type glycan array [259] and a glycan strip test [260]. However, occasional direct pig-to-human [261] and human-to-pig [262] transmission of swine and human IAVs, respectively, both of which preferentially bind to α2,6 sialyl glycans, and some avian IAVs, including HPAI H5N1 [263], H7N9 [264], H9N2 [265], H7N2 and H7N3 [266], that were reported to have increased binding to human-type α2,6Neu5Ac have not yet caused a pandemic. In addition to monitoring the α2,3 to α2,6 binding shift of HA, a simple test for monitoring shifts in other factors, such as PB2, should be developed for monitoring the situation of a virus with pandemic potential."}
LitCovid-sentences
{"project":"LitCovid-sentences","denotations":[{"id":"T454","span":{"begin":0,"end":298},"obj":"Sentence"},{"id":"T455","span":{"begin":299,"end":798},"obj":"Sentence"},{"id":"T456","span":{"begin":799,"end":1172},"obj":"Sentence"},{"id":"T457","span":{"begin":1173,"end":1388},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"Data from genome analysis of the past three IAV pandemics, except for the first identified 1918 H1N1 pandemic that remains a mystery, demonstrated that a pandemic emerged from viral reassortment with a human virus gene segment(s) and a nonhuman HA gene segment producing a major viral antigen [19]. Extensive studies on receptor binding specificities of IAVs from different hosts [19,256] have indicated that a nonhuman HA gene must acquire mutations to recognize α2,6Neu5Ac for efficient human-to-human transmission, leading to the development of several techniques for monitoring and assessing IAV pandemic potential, including a viral NA-based assay [257], a glycan microarray assay [258], an evanescent-field-activated fluorescence scanner type glycan array [259] and a glycan strip test [260]. However, occasional direct pig-to-human [261] and human-to-pig [262] transmission of swine and human IAVs, respectively, both of which preferentially bind to α2,6 sialyl glycans, and some avian IAVs, including HPAI H5N1 [263], H7N9 [264], H9N2 [265], H7N2 and H7N3 [266], that were reported to have increased binding to human-type α2,6Neu5Ac have not yet caused a pandemic. In addition to monitoring the α2,3 to α2,6 binding shift of HA, a simple test for monitoring shifts in other factors, such as PB2, should be developed for monitoring the situation of a virus with pandemic potential."}