PMC:7252096 / 111157-113145 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PD-FMA-UBERON

Id Subject Object Predicate Lexical cue fma_id
T103 195-201 Body_part denotes genome http://purl.org/sig/ont/fma/fma84116
T104 490-495 Body_part denotes Cells http://purl.org/sig/ont/fma/fma68646
T105 666-671 Body_part denotes cells http://purl.org/sig/ont/fma/fma68646
T106 781-786 Body_part denotes cells http://purl.org/sig/ont/fma/fma68646
T107 906-911 Body_part denotes elbow http://purl.org/sig/ont/fma/fma24901
T108 1278-1283 Body_part denotes cells http://purl.org/sig/ont/fma/fma68646
T109 1530-1535 Body_part denotes cells http://purl.org/sig/ont/fma/fma68646
T110 1563-1567 Body_part denotes cell http://purl.org/sig/ont/fma/fma68646
T111 1814-1819 Body_part denotes cells http://purl.org/sig/ont/fma/fma68646

LitCovid-PD-UBERON

Id Subject Object Predicate Lexical cue uberon_id
T250 466-471 Body_part denotes scale http://purl.obolibrary.org/obo/UBERON_0002542
T251 906-911 Body_part denotes elbow http://purl.obolibrary.org/obo/UBERON_0001461

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T154 62-67 http://purl.obolibrary.org/obo/CLO_0007836 denotes mouse
T155 464-465 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T156 490-495 http://purl.obolibrary.org/obo/GO_0005623 denotes Cells
T157 537-542 http://purl.obolibrary.org/obo/OGG_0000000002 denotes genes
T158 649-654 http://purl.obolibrary.org/obo/OGG_0000000002 denotes genes
T159 666-671 http://purl.obolibrary.org/obo/GO_0005623 denotes cells
T160 711-716 http://purl.obolibrary.org/obo/OGG_0000000002 denotes genes
T161 781-786 http://purl.obolibrary.org/obo/GO_0005623 denotes cells
T162 837-838 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T163 1047-1048 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T164 1278-1283 http://purl.obolibrary.org/obo/GO_0005623 denotes cells
T165 1530-1535 http://purl.obolibrary.org/obo/GO_0005623 denotes cells
T166 1561-1562 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T167 1563-1572 http://purl.obolibrary.org/obo/CL_0000000 denotes cell type
T168 1623-1628 http://purl.obolibrary.org/obo/OGG_0000000002 denotes genes
T169 1656-1660 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T170 1800-1805 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T171 1814-1819 http://purl.obolibrary.org/obo/GO_0005623 denotes cells

LitCovid-PD-GO-BP

Id Subject Object Predicate Lexical cue
T6 1252-1269 http://purl.obolibrary.org/obo/GO_0006351 denotes transcriptionally

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T797 0-163 Sentence denotes Libraries corresponding to 4 mice, with 2 Seq-Well arrays per mouse were sequenced using Illumina NextSeq as described (Gierahn et al., 2017, Hughes et al., 2019).
T798 164-315 Sentence denotes Reads were aligned to the mm10 genome and processed according to the Drop-Seq Computational Protocol v2.0 (https://github.com/broadinstitute/Drop-seq).
T799 316-489 Sentence denotes Data was normalized and scaled using the Seurat R package v2.3.4 (https://satijalab.org/seurat/): transforming the data to loge(UMI+1) and applying a scale factor of 10,000.
T800 490-556 Sentence denotes Cells with fewer than 1000 UMIs and 500 unique genes were removed.
T801 557-717 Sentence denotes To identify major axes of variation within our data, we first examined only highly variable genes across all cells, yielding approximately 5,000 variable genes.
T802 718-830 Sentence denotes An approximate principal component analysis was applied to the cells to generate 200 principal components (PCs).
T803 831-1016 Sentence denotes Using a combination of the Jackstraw function in Seurat and observing the “elbow” of the standard deviations of PCs, we chose the top 70 PCs for subsequent clustering and visualization.
T804 1017-1227 Sentence denotes For 2D visualization, we used a Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction technique (https://github.com/lmcinnes/umap) with “min_dist” set to 0.3 and “n_neighbors” set to 50.
T805 1228-1442 Sentence denotes To identify clusters of transcriptionally similar cells, we employed unsupervised clustering as described above using the FindClusters tool within the Seurat R package with default parameters and k.param set to 10.
T806 1443-1536 Sentence denotes Resolution was chosen based on maximization of the average silhouette width across all cells.
T807 1537-1775 Sentence denotes Clusters were merged if a cell type expressed fewer than 25 significantly upregulated genes by differential expression test (FindAllMarkers implemented in Seurat, setting “test.use” to “bimod,” Bonferroni-adjusted p value cutoff < 0.001).
T808 1776-1936 Sentence denotes Differential expression tests between cells from saline-treated or IFNa-treated mice were assessed using the FindMarkers function with “test.use” set to “bimod.
T809 1937-1988 Sentence denotes This dataset can be visualized and downloaded here:

LitCovid-PubTator

Id Subject Object Predicate Lexical cue tao:has_database_id
2768 1843-1847 Gene denotes IFNa Gene:111654
2769 29-33 Species denotes mice Tax:10090
2770 62-67 Species denotes mouse Tax:10090
2771 1856-1860 Species denotes mice Tax:10090

2_test

Id Subject Object Predicate Lexical cue
32413319-28192419-20790582 136-140 28192419 denotes 2017