PMC:7247521 / 10622-11509
Annnotations
LitCovid-PubTator
{"project":"LitCovid-PubTator","denotations":[{"id":"176","span":{"begin":307,"end":311},"obj":"Gene"},{"id":"177","span":{"begin":327,"end":331},"obj":"Gene"},{"id":"178","span":{"begin":350,"end":354},"obj":"Gene"},{"id":"179","span":{"begin":376,"end":384},"obj":"Gene"},{"id":"180","span":{"begin":403,"end":411},"obj":"Gene"},{"id":"181","span":{"begin":313,"end":318},"obj":"Gene"},{"id":"182","span":{"begin":88,"end":92},"obj":"Species"},{"id":"183","span":{"begin":281,"end":290},"obj":"Species"},{"id":"184","span":{"begin":37,"end":45},"obj":"Disease"},{"id":"185","span":{"begin":55,"end":63},"obj":"Disease"},{"id":"186","span":{"begin":166,"end":174},"obj":"Disease"},{"id":"187","span":{"begin":862,"end":870},"obj":"Disease"}],"attributes":[{"id":"A176","pred":"tao:has_database_id","subj":"176","obj":"Gene:8673700"},{"id":"A177","pred":"tao:has_database_id","subj":"177","obj":"Gene:43740578"},{"id":"A178","pred":"tao:has_database_id","subj":"178","obj":"Gene:43740578"},{"id":"A179","pred":"tao:has_database_id","subj":"179","obj":"Gene:164045"},{"id":"A180","pred":"tao:has_database_id","subj":"180","obj":"Gene:164045"},{"id":"A181","pred":"tao:has_database_id","subj":"181","obj":"Gene:43740578"},{"id":"A182","pred":"tao:has_database_id","subj":"182","obj":"Tax:2697049"},{"id":"A183","pred":"tao:has_database_id","subj":"183","obj":"Tax:2697049"},{"id":"A184","pred":"tao:has_database_id","subj":"184","obj":"MESH:C000657245"},{"id":"A185","pred":"tao:has_database_id","subj":"185","obj":"MESH:C000657245"},{"id":"A186","pred":"tao:has_database_id","subj":"186","obj":"MESH:C000657245"},{"id":"A187","pred":"tao:has_database_id","subj":"187","obj":"MESH:C000657245"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"To facilitate drug discovery against COVID-19, we used COVID-19 Docking Server (https://ncov.schanglab.org.cn/index.php) [23] to predict the binding modes between 12 COVID-19 targets and the 20 lead-likeness of QFPD. Specifically, the 10 nonstructural and 2 structural proteins of 2019-nCov were collected (Mpro, PLpro, nsp12 [RdRp with RNA], nsp12 [RdRp without RNA], nsp13 [Helicase ADP site], nsp13 [Helicase NCB site], nsp14 [ExoN], nsp14 [N7-MTase], nsp15 [endoribonuclease], nsp16 [2′-O-MTase], N protein NCB site and E protein [ion channel]); and the corresponding Protein Data Bank (PDB)codes were 6LU7, 4OW0, 3H5Y (with RNA), 3H5Y (without RNA), 6JYT (ADP site), 6JYT (NCB site), 5C8S (ExoN),5C8S (N7-MTase), 2RHB, 2XYR, 4KYJ, and 5 × 29, respectively. Finally, Discovery Studio software elucidated the 14 best docking results between compounds and the COVID-19 target proteins."}
LitCovid-PMC-OGER-BB
{"project":"LitCovid-PMC-OGER-BB","denotations":[{"id":"T114","span":{"begin":14,"end":18},"obj":"CHEBI:23888;CHEBI:23888"},{"id":"T115","span":{"begin":37,"end":45},"obj":"SP_7"},{"id":"T116","span":{"begin":55,"end":63},"obj":"SP_7"},{"id":"T117","span":{"begin":166,"end":174},"obj":"SP_7"},{"id":"T118","span":{"begin":281,"end":290},"obj":"SP_7"},{"id":"T119","span":{"begin":320,"end":325},"obj":"PR:000000125"},{"id":"T120","span":{"begin":343,"end":348},"obj":"PR:000000125"},{"id":"T121","span":{"begin":369,"end":374},"obj":"PR:000000125"},{"id":"T122","span":{"begin":385,"end":393},"obj":"SO:0000346"},{"id":"T123","span":{"begin":396,"end":401},"obj":"PR:000000125"},{"id":"T124","span":{"begin":423,"end":428},"obj":"PR:000000125"},{"id":"T125","span":{"begin":437,"end":442},"obj":"PR:000000125"},{"id":"T126","span":{"begin":455,"end":460},"obj":"PR:000000125"},{"id":"T127","span":{"begin":481,"end":486},"obj":"PR:000000125"},{"id":"T128","span":{"begin":501,"end":510},"obj":"PG_4"},{"id":"T129","span":{"begin":524,"end":533},"obj":"PG_2"},{"id":"T130","span":{"begin":535,"end":538},"obj":"CHEBI:24870;CHEBI:24870"},{"id":"T131","span":{"begin":665,"end":669},"obj":"SO:0000346"},{"id":"T132","span":{"begin":844,"end":853},"obj":"CHEBI:36357;CHEBI:36357"},{"id":"T133","span":{"begin":862,"end":870},"obj":"SP_7"}],"text":"To facilitate drug discovery against COVID-19, we used COVID-19 Docking Server (https://ncov.schanglab.org.cn/index.php) [23] to predict the binding modes between 12 COVID-19 targets and the 20 lead-likeness of QFPD. Specifically, the 10 nonstructural and 2 structural proteins of 2019-nCov were collected (Mpro, PLpro, nsp12 [RdRp with RNA], nsp12 [RdRp without RNA], nsp13 [Helicase ADP site], nsp13 [Helicase NCB site], nsp14 [ExoN], nsp14 [N7-MTase], nsp15 [endoribonuclease], nsp16 [2′-O-MTase], N protein NCB site and E protein [ion channel]); and the corresponding Protein Data Bank (PDB)codes were 6LU7, 4OW0, 3H5Y (with RNA), 3H5Y (without RNA), 6JYT (ADP site), 6JYT (NCB site), 5C8S (ExoN),5C8S (N7-MTase), 2RHB, 2XYR, 4KYJ, and 5 × 29, respectively. Finally, Discovery Studio software elucidated the 14 best docking results between compounds and the COVID-19 target proteins."}
LitCovid-PD-FMA-UBERON
{"project":"LitCovid-PD-FMA-UBERON","denotations":[{"id":"T19","span":{"begin":269,"end":277},"obj":"Body_part"},{"id":"T20","span":{"begin":337,"end":340},"obj":"Body_part"},{"id":"T21","span":{"begin":363,"end":366},"obj":"Body_part"},{"id":"T22","span":{"begin":430,"end":434},"obj":"Body_part"},{"id":"T23","span":{"begin":503,"end":510},"obj":"Body_part"},{"id":"T24","span":{"begin":526,"end":533},"obj":"Body_part"},{"id":"T25","span":{"begin":572,"end":579},"obj":"Body_part"},{"id":"T26","span":{"begin":629,"end":632},"obj":"Body_part"},{"id":"T27","span":{"begin":649,"end":652},"obj":"Body_part"},{"id":"T28","span":{"begin":695,"end":699},"obj":"Body_part"},{"id":"T29","span":{"begin":878,"end":886},"obj":"Body_part"}],"attributes":[{"id":"A19","pred":"fma_id","subj":"T19","obj":"http://purl.org/sig/ont/fma/fma67257"},{"id":"A20","pred":"fma_id","subj":"T20","obj":"http://purl.org/sig/ont/fma/fma67095"},{"id":"A21","pred":"fma_id","subj":"T21","obj":"http://purl.org/sig/ont/fma/fma67095"},{"id":"A22","pred":"fma_id","subj":"T22","obj":"http://purl.org/sig/ont/fma/fma84120"},{"id":"A23","pred":"fma_id","subj":"T23","obj":"http://purl.org/sig/ont/fma/fma67257"},{"id":"A24","pred":"fma_id","subj":"T24","obj":"http://purl.org/sig/ont/fma/fma67257"},{"id":"A25","pred":"fma_id","subj":"T25","obj":"http://purl.org/sig/ont/fma/fma67257"},{"id":"A26","pred":"fma_id","subj":"T26","obj":"http://purl.org/sig/ont/fma/fma67095"},{"id":"A27","pred":"fma_id","subj":"T27","obj":"http://purl.org/sig/ont/fma/fma67095"},{"id":"A28","pred":"fma_id","subj":"T28","obj":"http://purl.org/sig/ont/fma/fma84120"},{"id":"A29","pred":"fma_id","subj":"T29","obj":"http://purl.org/sig/ont/fma/fma67257"}],"text":"To facilitate drug discovery against COVID-19, we used COVID-19 Docking Server (https://ncov.schanglab.org.cn/index.php) [23] to predict the binding modes between 12 COVID-19 targets and the 20 lead-likeness of QFPD. Specifically, the 10 nonstructural and 2 structural proteins of 2019-nCov were collected (Mpro, PLpro, nsp12 [RdRp with RNA], nsp12 [RdRp without RNA], nsp13 [Helicase ADP site], nsp13 [Helicase NCB site], nsp14 [ExoN], nsp14 [N7-MTase], nsp15 [endoribonuclease], nsp16 [2′-O-MTase], N protein NCB site and E protein [ion channel]); and the corresponding Protein Data Bank (PDB)codes were 6LU7, 4OW0, 3H5Y (with RNA), 3H5Y (without RNA), 6JYT (ADP site), 6JYT (NCB site), 5C8S (ExoN),5C8S (N7-MTase), 2RHB, 2XYR, 4KYJ, and 5 × 29, respectively. Finally, Discovery Studio software elucidated the 14 best docking results between compounds and the COVID-19 target proteins."}
LitCovid-PD-MONDO
{"project":"LitCovid-PD-MONDO","denotations":[{"id":"T34","span":{"begin":37,"end":45},"obj":"Disease"},{"id":"T35","span":{"begin":55,"end":63},"obj":"Disease"},{"id":"T36","span":{"begin":166,"end":174},"obj":"Disease"},{"id":"T37","span":{"begin":862,"end":870},"obj":"Disease"}],"attributes":[{"id":"A34","pred":"mondo_id","subj":"T34","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A35","pred":"mondo_id","subj":"T35","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A36","pred":"mondo_id","subj":"T36","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A37","pred":"mondo_id","subj":"T37","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"}],"text":"To facilitate drug discovery against COVID-19, we used COVID-19 Docking Server (https://ncov.schanglab.org.cn/index.php) [23] to predict the binding modes between 12 COVID-19 targets and the 20 lead-likeness of QFPD. Specifically, the 10 nonstructural and 2 structural proteins of 2019-nCov were collected (Mpro, PLpro, nsp12 [RdRp with RNA], nsp12 [RdRp without RNA], nsp13 [Helicase ADP site], nsp13 [Helicase NCB site], nsp14 [ExoN], nsp14 [N7-MTase], nsp15 [endoribonuclease], nsp16 [2′-O-MTase], N protein NCB site and E protein [ion channel]); and the corresponding Protein Data Bank (PDB)codes were 6LU7, 4OW0, 3H5Y (with RNA), 3H5Y (without RNA), 6JYT (ADP site), 6JYT (NCB site), 5C8S (ExoN),5C8S (N7-MTase), 2RHB, 2XYR, 4KYJ, and 5 × 29, respectively. Finally, Discovery Studio software elucidated the 14 best docking results between compounds and the COVID-19 target proteins."}
LitCovid-PD-CHEBI
{"project":"LitCovid-PD-CHEBI","denotations":[{"id":"T48","span":{"begin":14,"end":18},"obj":"Chemical"},{"id":"T49","span":{"begin":269,"end":277},"obj":"Chemical"},{"id":"T50","span":{"begin":385,"end":388},"obj":"Chemical"},{"id":"T53","span":{"begin":503,"end":510},"obj":"Chemical"},{"id":"T54","span":{"begin":526,"end":533},"obj":"Chemical"},{"id":"T55","span":{"begin":535,"end":538},"obj":"Chemical"},{"id":"T56","span":{"begin":572,"end":579},"obj":"Chemical"},{"id":"T57","span":{"begin":661,"end":664},"obj":"Chemical"},{"id":"T60","span":{"begin":878,"end":886},"obj":"Chemical"}],"attributes":[{"id":"A48","pred":"chebi_id","subj":"T48","obj":"http://purl.obolibrary.org/obo/CHEBI_23888"},{"id":"A49","pred":"chebi_id","subj":"T49","obj":"http://purl.obolibrary.org/obo/CHEBI_36080"},{"id":"A50","pred":"chebi_id","subj":"T50","obj":"http://purl.obolibrary.org/obo/CHEBI_16761"},{"id":"A51","pred":"chebi_id","subj":"T50","obj":"http://purl.obolibrary.org/obo/CHEBI_456216"},{"id":"A52","pred":"chebi_id","subj":"T50","obj":"http://purl.obolibrary.org/obo/CHEBI_73342"},{"id":"A53","pred":"chebi_id","subj":"T53","obj":"http://purl.obolibrary.org/obo/CHEBI_36080"},{"id":"A54","pred":"chebi_id","subj":"T54","obj":"http://purl.obolibrary.org/obo/CHEBI_36080"},{"id":"A55","pred":"chebi_id","subj":"T55","obj":"http://purl.obolibrary.org/obo/CHEBI_24870"},{"id":"A56","pred":"chebi_id","subj":"T56","obj":"http://purl.obolibrary.org/obo/CHEBI_16541"},{"id":"A57","pred":"chebi_id","subj":"T57","obj":"http://purl.obolibrary.org/obo/CHEBI_16761"},{"id":"A58","pred":"chebi_id","subj":"T57","obj":"http://purl.obolibrary.org/obo/CHEBI_456216"},{"id":"A59","pred":"chebi_id","subj":"T57","obj":"http://purl.obolibrary.org/obo/CHEBI_73342"},{"id":"A60","pred":"chebi_id","subj":"T60","obj":"http://purl.obolibrary.org/obo/CHEBI_36080"}],"text":"To facilitate drug discovery against COVID-19, we used COVID-19 Docking Server (https://ncov.schanglab.org.cn/index.php) [23] to predict the binding modes between 12 COVID-19 targets and the 20 lead-likeness of QFPD. Specifically, the 10 nonstructural and 2 structural proteins of 2019-nCov were collected (Mpro, PLpro, nsp12 [RdRp with RNA], nsp12 [RdRp without RNA], nsp13 [Helicase ADP site], nsp13 [Helicase NCB site], nsp14 [ExoN], nsp14 [N7-MTase], nsp15 [endoribonuclease], nsp16 [2′-O-MTase], N protein NCB site and E protein [ion channel]); and the corresponding Protein Data Bank (PDB)codes were 6LU7, 4OW0, 3H5Y (with RNA), 3H5Y (without RNA), 6JYT (ADP site), 6JYT (NCB site), 5C8S (ExoN),5C8S (N7-MTase), 2RHB, 2XYR, 4KYJ, and 5 × 29, respectively. Finally, Discovery Studio software elucidated the 14 best docking results between compounds and the COVID-19 target proteins."}
LitCovid-PD-GO-BP
{"project":"LitCovid-PD-GO-BP","denotations":[{"id":"T29","span":{"begin":535,"end":546},"obj":"http://purl.obolibrary.org/obo/GO_0022831"}],"text":"To facilitate drug discovery against COVID-19, we used COVID-19 Docking Server (https://ncov.schanglab.org.cn/index.php) [23] to predict the binding modes between 12 COVID-19 targets and the 20 lead-likeness of QFPD. Specifically, the 10 nonstructural and 2 structural proteins of 2019-nCov were collected (Mpro, PLpro, nsp12 [RdRp with RNA], nsp12 [RdRp without RNA], nsp13 [Helicase ADP site], nsp13 [Helicase NCB site], nsp14 [ExoN], nsp14 [N7-MTase], nsp15 [endoribonuclease], nsp16 [2′-O-MTase], N protein NCB site and E protein [ion channel]); and the corresponding Protein Data Bank (PDB)codes were 6LU7, 4OW0, 3H5Y (with RNA), 3H5Y (without RNA), 6JYT (ADP site), 6JYT (NCB site), 5C8S (ExoN),5C8S (N7-MTase), 2RHB, 2XYR, 4KYJ, and 5 × 29, respectively. Finally, Discovery Studio software elucidated the 14 best docking results between compounds and the COVID-19 target proteins."}
LitCovid-sentences
{"project":"LitCovid-sentences","denotations":[{"id":"T67","span":{"begin":0,"end":216},"obj":"Sentence"},{"id":"T68","span":{"begin":217,"end":761},"obj":"Sentence"},{"id":"T69","span":{"begin":762,"end":887},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"To facilitate drug discovery against COVID-19, we used COVID-19 Docking Server (https://ncov.schanglab.org.cn/index.php) [23] to predict the binding modes between 12 COVID-19 targets and the 20 lead-likeness of QFPD. Specifically, the 10 nonstructural and 2 structural proteins of 2019-nCov were collected (Mpro, PLpro, nsp12 [RdRp with RNA], nsp12 [RdRp without RNA], nsp13 [Helicase ADP site], nsp13 [Helicase NCB site], nsp14 [ExoN], nsp14 [N7-MTase], nsp15 [endoribonuclease], nsp16 [2′-O-MTase], N protein NCB site and E protein [ion channel]); and the corresponding Protein Data Bank (PDB)codes were 6LU7, 4OW0, 3H5Y (with RNA), 3H5Y (without RNA), 6JYT (ADP site), 6JYT (NCB site), 5C8S (ExoN),5C8S (N7-MTase), 2RHB, 2XYR, 4KYJ, and 5 × 29, respectively. Finally, Discovery Studio software elucidated the 14 best docking results between compounds and the COVID-19 target proteins."}