PMC:7152911 / 126808-139713 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PubTator

Id Subject Object Predicate Lexical cue tao:has_database_id
1964 1398-1404 Chemical denotes carbon MESH:D002244
1965 1455-1463 Chemical denotes graphene MESH:D006108
1972 583-589 Chemical denotes Carbon MESH:D002244
1973 614-622 Chemical denotes graphite MESH:D006108
1974 624-632 Chemical denotes graphene MESH:D006108
1975 845-851 Chemical denotes carbon MESH:D002244
1976 965-972 Chemical denotes polymer MESH:D011108
1977 1042-1047 Chemical denotes metal MESH:D008670
1982 3305-3313 Species denotes patients Tax:9606
1983 3978-3985 Chemical denotes lactate MESH:D019344
1984 3987-3994 Chemical denotes glucose MESH:D005947
1985 4142-4157 Disease denotes skin irritation MESH:D012871
1988 5205-5214 Species denotes C. parvum Tax:5807
1989 4848-4863 Disease denotes lamblia oocysts MESH:D005873
1995 5473-5478 Species denotes human Tax:9606
1996 5802-5806 Species denotes rice Tax:4530
1997 5808-5813 Species denotes maize Tax:4577
1998 5815-5821 Species denotes potato Tax:4113
1999 5827-5834 Species denotes soybean Tax:3847
2004 6535-6542 Species denotes E. coli Tax:562
2005 6552-6563 Species denotes V. cholerae Tax:666
2006 6804-6811 Species denotes E. coli Tax:562
2007 6821-6830 Species denotes S. aureus Tax:1280
2015 7937-7944 Species denotes E. coli Tax:562
2016 7576-7583 Chemical denotes glycine MESH:D005998
2017 7589-7593 Chemical denotes urea MESH:D014508
2018 7823-7830 Chemical denotes acetone MESH:D000096
2019 7879-7881 Chemical denotes Au MESH:D006046
2020 8040-8057 Chemical denotes hydrogen peroxide MESH:D006861
2021 7997-8004 Disease denotes Johnson MESH:C535882
2023 9218-9226 Disease denotes toxicity MESH:D064420
2025 9890-9895 Chemical denotes water MESH:D014867
2028 12853-12860 Species denotes E. coli Tax:562
2029 12252-12261 Disease denotes infection MESH:D007239

LitCovid-PD-FMA-UBERON

Id Subject Object Predicate Lexical cue fma_id
T38 1643-1648 Body_part denotes tooth http://purl.org/sig/ont/fma/fma12516
T39 1649-1655 Body_part denotes enamel http://purl.org/sig/ont/fma/fma55629
T40 2533-2538 Body_part denotes organ http://purl.org/sig/ont/fma/fma67498
T41 2895-2899 Body_part denotes skin http://purl.org/sig/ont/fma/fma7163
T42 3258-3269 Body_part denotes body fluids http://purl.org/sig/ont/fma/fma280556
T43 3258-3262 Body_part denotes body http://purl.org/sig/ont/fma/fma256135
T44 3279-3284 Body_part denotes blood http://purl.org/sig/ont/fma/fma9670
T45 3289-3294 Body_part denotes sweat http://purl.org/sig/ont/fma/fma12275
T46 3987-3994 Body_part denotes glucose http://purl.org/sig/ont/fma/fma82743
T47 4142-4146 Body_part denotes skin http://purl.org/sig/ont/fma/fma7163
T48 4200-4206 Body_part denotes tissue http://purl.org/sig/ont/fma/fma9637
T49 4278-4288 Body_part denotes body fluid http://purl.org/sig/ont/fma/fma280556
T50 7576-7583 Body_part denotes glycine http://purl.org/sig/ont/fma/fma82753
T51 7639-7645 Body_part denotes plasma http://purl.org/sig/ont/fma/fma62970
T52 7836-7842 Body_part denotes plasma http://purl.org/sig/ont/fma/fma62970
T53 8920-8929 Body_part denotes capillary http://purl.org/sig/ont/fma/fma63194
T54 12599-12604 Body_part denotes tooth http://purl.org/sig/ont/fma/fma12516
T55 12605-12611 Body_part denotes enamel http://purl.org/sig/ont/fma/fma55629

LitCovid-PD-UBERON

Id Subject Object Predicate Lexical cue uberon_id
T32 1649-1655 Body_part denotes enamel http://purl.obolibrary.org/obo/UBERON_0001752
T33 2533-2538 Body_part denotes organ http://purl.obolibrary.org/obo/UBERON_0000062
T34 2895-2899 Body_part denotes skin http://purl.obolibrary.org/obo/UBERON_0000014
T35 3279-3284 Body_part denotes blood http://purl.obolibrary.org/obo/UBERON_0000178
T36 3289-3294 Body_part denotes sweat http://purl.obolibrary.org/obo/UBERON_0001089
T37 4142-4146 Body_part denotes skin http://purl.obolibrary.org/obo/UBERON_0000014
T38 4200-4206 Body_part denotes tissue http://purl.obolibrary.org/obo/UBERON_0000479
T39 5691-5695 Body_part denotes crop http://purl.obolibrary.org/obo/UBERON_0007356
T40 8920-8929 Body_part denotes capillary http://purl.obolibrary.org/obo/UBERON_0001982
T41 12605-12611 Body_part denotes enamel http://purl.obolibrary.org/obo/UBERON_0001752

LitCovid-PD-MONDO

Id Subject Object Predicate Lexical cue mondo_id
T129 5409-5419 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T130 12252-12261 Disease denotes infection http://purl.obolibrary.org/obo/MONDO_0005550

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T155 298-303 http://purl.obolibrary.org/obo/UBERON_0007688 denotes field
T156 457-458 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T157 488-493 http://purl.obolibrary.org/obo/UBERON_0007688 denotes field
T158 575-581 http://purl.obolibrary.org/obo/OBI_0000968 denotes device
T159 671-672 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T160 1122-1123 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T161 1153-1154 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T162 1349-1350 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T163 1438-1439 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T164 1701-1707 http://purl.obolibrary.org/obo/SO_0000418 denotes signal
T165 1723-1728 http://purl.obolibrary.org/obo/UBERON_0007688 denotes field
T166 1827-1833 http://purl.obolibrary.org/obo/OBI_0000968 denotes device
T167 2084-2087 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T168 2238-2244 http://purl.obolibrary.org/obo/OBI_0000968 denotes device
T169 2283-2286 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T170 2298-2299 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T171 2428-2431 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T172 2533-2538 http://purl.obolibrary.org/obo/UBERON_0003103 denotes organ
T173 2643-2647 http://purl.obolibrary.org/obo/CLO_0001185 denotes 2018
T174 2880-2887 http://purl.obolibrary.org/obo/BFO_0000030 denotes objects
T175 2895-2899 http://purl.obolibrary.org/obo/UBERON_0000014 denotes skin
T176 2895-2899 http://purl.obolibrary.org/obo/UBERON_0001003 denotes skin
T177 2895-2899 http://purl.obolibrary.org/obo/UBERON_0002097 denotes skin
T178 2895-2899 http://purl.obolibrary.org/obo/UBERON_0002199 denotes skin
T179 2895-2899 http://www.ebi.ac.uk/efo/EFO_0000962 denotes skin
T180 2938-2939 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T181 2976-2981 http://purl.obolibrary.org/obo/UBERON_0007688 denotes field
T182 3003-3010 http://purl.obolibrary.org/obo/OBI_0000968 denotes devices
T183 3142-3149 http://purl.obolibrary.org/obo/OBI_0000968 denotes devices
T184 3213-3220 http://purl.obolibrary.org/obo/OBI_0000968 denotes devices
T185 3258-3269 http://purl.obolibrary.org/obo/UBERON_0006314 denotes body fluids
T186 3279-3284 http://purl.obolibrary.org/obo/UBERON_0000178 denotes blood
T187 3279-3284 http://www.ebi.ac.uk/efo/EFO_0000296 denotes blood
T188 3463-3464 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T189 3485-3492 http://purl.obolibrary.org/obo/OBI_0000968 denotes devices
T190 3595-3596 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T191 3724-3727 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T192 3834-3837 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T193 4142-4146 http://purl.obolibrary.org/obo/UBERON_0000014 denotes skin
T194 4142-4146 http://purl.obolibrary.org/obo/UBERON_0001003 denotes skin
T195 4142-4146 http://purl.obolibrary.org/obo/UBERON_0002097 denotes skin
T196 4142-4146 http://purl.obolibrary.org/obo/UBERON_0002199 denotes skin
T197 4142-4146 http://www.ebi.ac.uk/efo/EFO_0000962 denotes skin
T198 4160-4166 http://purl.obolibrary.org/obo/OBI_0000968 denotes device
T199 4278-4288 http://purl.obolibrary.org/obo/UBERON_0006314 denotes body fluid
T200 4533-4534 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T201 4557-4558 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T202 4792-4794 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T203 5118-5119 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T204 5473-5478 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T205 5889-5896 http://purl.obolibrary.org/obo/NCBITaxon_10239 denotes viruses
T206 5907-5915 http://purl.obolibrary.org/obo/NCBITaxon_2 denotes bacteria
T207 5981-5982 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T208 6172-6175 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T209 6187-6188 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T210 6448-6449 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T211 6498-6500 http://purl.obolibrary.org/obo/CLO_0001022 denotes Li
T212 6498-6500 http://purl.obolibrary.org/obo/CLO_0007314 denotes Li
T213 6594-6596 http://purl.obolibrary.org/obo/CLO_0001022 denotes Li
T214 6594-6596 http://purl.obolibrary.org/obo/CLO_0007314 denotes Li
T215 6660-6661 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T216 6757-6758 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T217 6838-6839 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T218 6901-6903 http://purl.obolibrary.org/obo/CLO_0001387 denotes 4c
T219 7018-7019 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T220 7151-7152 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T221 7230-7233 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T222 7639-7645 http://purl.obolibrary.org/obo/UBERON_0001969 denotes plasma
T223 7797-7798 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T224 7814-7821 http://purl.obolibrary.org/obo/OBI_0100026 denotes organic
T225 7814-7821 http://purl.obolibrary.org/obo/UBERON_0000468 denotes organic
T226 7836-7842 http://purl.obolibrary.org/obo/UBERON_0001969 denotes plasma
T227 7952-7959 http://purl.obolibrary.org/obo/OBI_0000968 denotes devices
T228 8025-8026 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T229 8432-8433 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T230 8637-8638 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T231 9084-9091 http://purl.obolibrary.org/obo/OBI_0000968 denotes devices
T232 9383-9384 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T233 9512-9518 http://purl.obolibrary.org/obo/CLO_0001658 denotes active
T234 9584-9588 http://purl.obolibrary.org/obo/CLO_0001185 denotes 2018
T235 9612-9619 http://purl.obolibrary.org/obo/OBI_0000968 denotes devices
T236 9815-9816 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T237 9965-9968 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T238 10095-10100 http://purl.obolibrary.org/obo/UBERON_0007688 denotes field
T239 10277-10283 http://purl.obolibrary.org/obo/OBI_0000968 denotes device
T240 10371-10377 http://purl.obolibrary.org/obo/SO_0000418 denotes signal
T241 10537-10538 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T242 10945-10946 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T243 11372-11375 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T244 11392-11393 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T245 11456-11457 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T246 11674-11675 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T247 12116-12119 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T248 12551-12552 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T249 12577-12585 http://purl.obolibrary.org/obo/NCBITaxon_2 denotes bacteria
T250 12621-12622 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T251 12818-12824 http://purl.obolibrary.org/obo/SO_0000418 denotes signal

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T14051 583-589 Chemical denotes Carbon http://purl.obolibrary.org/obo/CHEBI_27594
T27933 614-622 Chemical denotes graphite http://purl.obolibrary.org/obo/CHEBI_33418|http://purl.obolibrary.org/obo/CHEBI_36977
T17305 624-632 Chemical denotes graphene http://purl.obolibrary.org/obo/CHEBI_36973
T32717 845-851 Chemical denotes carbon http://purl.obolibrary.org/obo/CHEBI_27594|http://purl.obolibrary.org/obo/CHEBI_33415
T41390 965-972 Chemical denotes polymer http://purl.obolibrary.org/obo/CHEBI_33839|http://purl.obolibrary.org/obo/CHEBI_60027
T52285 1224-1230 Chemical denotes carbon http://purl.obolibrary.org/obo/CHEBI_27594|http://purl.obolibrary.org/obo/CHEBI_33415
T92009 1398-1404 Chemical denotes carbon http://purl.obolibrary.org/obo/CHEBI_27594|http://purl.obolibrary.org/obo/CHEBI_33415
T88468 1455-1463 Chemical denotes graphene http://purl.obolibrary.org/obo/CHEBI_36973
T7407 3106-3117 Chemical denotes application http://purl.obolibrary.org/obo/CHEBI_33232
T69404 3959-3968 Chemical denotes molecules http://purl.obolibrary.org/obo/CHEBI_25367
T128 3978-3985 Chemical denotes lactate http://purl.obolibrary.org/obo/CHEBI_24996
T15076 3987-3994 Chemical denotes glucose http://purl.obolibrary.org/obo/CHEBI_17234|http://purl.obolibrary.org/obo/CHEBI_4167
T5183 4051-4062 Chemical denotes application http://purl.obolibrary.org/obo/CHEBI_33232
T47187 5983-5994 Chemical denotes polypyrrole http://purl.obolibrary.org/obo/CHEBI_38077|http://purl.obolibrary.org/obo/CHEBI_53263
T50736 5995-6005 Chemical denotes nanoribbon http://purl.obolibrary.org/obo/CHEBI_52530
T41560 6498-6500 Chemical denotes Li http://purl.obolibrary.org/obo/CHEBI_30145
T85681 6594-6596 Chemical denotes Li http://purl.obolibrary.org/obo/CHEBI_30145
T97738 7531-7535 Chemical denotes acid http://purl.obolibrary.org/obo/CHEBI_37527
T30089 7536-7540 Chemical denotes base http://purl.obolibrary.org/obo/CHEBI_22695
T2572 7576-7583 Chemical denotes glycine http://purl.obolibrary.org/obo/CHEBI_15428|http://purl.obolibrary.org/obo/CHEBI_29947|http://purl.obolibrary.org/obo/CHEBI_57305
T93186 7589-7593 Chemical denotes urea http://purl.obolibrary.org/obo/CHEBI_16199
T90680 7823-7830 Chemical denotes acetone http://purl.obolibrary.org/obo/CHEBI_15347
T48726 7879-7881 Chemical denotes Au http://purl.obolibrary.org/obo/CHEBI_29287
T27352 8040-8057 Chemical denotes hydrogen peroxide http://purl.obolibrary.org/obo/CHEBI_16240
T67965 8040-8048 Chemical denotes hydrogen http://purl.obolibrary.org/obo/CHEBI_49637
T44570 8049-8057 Chemical denotes peroxide http://purl.obolibrary.org/obo/CHEBI_44785
T50607 9890-9895 Chemical denotes water http://purl.obolibrary.org/obo/CHEBI_15377
T27038 12639-12641 Chemical denotes RF http://purl.obolibrary.org/obo/CHEBI_73818

LitCovid-PD-GO-BP

Id Subject Object Predicate Lexical cue
T8 1701-1718 http://purl.obolibrary.org/obo/GO_0023052 denotes signal processing
T9 4278-4299 http://purl.obolibrary.org/obo/GO_0007589 denotes body fluid secretions
T10 4316-4325 http://purl.obolibrary.org/obo/GO_0006810 denotes transport
T11 4464-4485 http://purl.obolibrary.org/obo/GO_0001563 denotes Detection of protozoa
T12 4923-4944 http://purl.obolibrary.org/obo/GO_0001563 denotes detection of protozoa
T13 5247-5264 http://purl.obolibrary.org/obo/GO_0001563 denotes detected protozoa
T14 7169-7181 http://purl.obolibrary.org/obo/GO_0031099 denotes regeneration
T15 7312-7324 http://purl.obolibrary.org/obo/GO_0031099 denotes regeneration
T16 7550-7562 http://purl.obolibrary.org/obo/GO_0031099 denotes regeneration
T17 7625-7637 http://purl.obolibrary.org/obo/GO_0031099 denotes regeneration
T18 8097-8109 http://purl.obolibrary.org/obo/GO_0031099 denotes regeneration
T19 8310-8322 http://purl.obolibrary.org/obo/GO_0031099 denotes regeneration
T20 9182-9193 http://purl.obolibrary.org/obo/GO_0009056 denotes degradation
T21 10769-10781 http://purl.obolibrary.org/obo/GO_0009293 denotes transduction
T22 12025-12037 http://purl.obolibrary.org/obo/GO_0009293 denotes transduction
T23 12077-12089 http://purl.obolibrary.org/obo/GO_0009293 denotes transduction
T24 12703-12715 http://purl.obolibrary.org/obo/GO_0009293 denotes transduction
T25 12818-12835 http://purl.obolibrary.org/obo/GO_0023052 denotes signal processing

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T1018 0-99 Sentence denotes 5 Present challenges and future directions for pathogen detection using electrochemical biosensors
T1019 100-304 Sentence denotes Here, we discuss the present challenges and future directions associated with pathogen detection using electrochemical biosensors to identify future research opportunities and emerging areas in the field.
T1020 306-380 Sentence denotes 5.1 Emerging electrode materials, fabrication processes, and form factors
T1021 381-494 Sentence denotes The ability to create robust, low-cost biosensors for pathogen detection is a significant challenge in the field.
T1022 495-582 Sentence denotes One of the primary methods of reducing cost is decreasing the material cost per device.
T1023 583-687 Sentence denotes Carbon-based electrodes (e.g., graphite, graphene, CNTs), such as those shown in Fig. 7 a (Afonso et al.
T1024 688-713 Sentence denotes 2016) and 7b (Wang et al.
T1025 714-830 Sentence denotes 2013), are now being examined as potential alternatives to relatively more expensive metallic or ceramic electrodes.
T1026 831-953 Sentence denotes Many of these carbon-based materials are also nanoscale in structure, and thus offer advantages regarding nanostructuring.
T1027 954-1089 Sentence denotes Similarly, polymer-based electrodes have also been examined as low-cost alternatives to metal electrodes as described in Section 2.1.3.
T1028 1090-1259 Sentence denotes For example, Afonso et al. used a home craft cutter printer as a highly accessible means of fabricating high quantities of disposable carbon-based sensors (Afonso et al.
T1029 1260-1266 Sentence denotes 2016).
T1030 1267-1430 Sentence denotes Fig. 7 State-of-the-art developments in electrochemical biosensors for pathogens. a) Low-cost, flexible, disposable screen-printed carbon electrodes (Afonso et al.
T1031 1431-1487 Sentence denotes 2016). b) Free-standing graphene electrodes (Wang et al.
T1032 1488-1590 Sentence denotes 2013). c) Paper-based substrates for pathogen detection using electrochemical methods (Bhardwaj et al.
T1033 1591-1671 Sentence denotes 2017). d) Wearable wireless bacterial biosensor for tooth enamel (Mannoor et al.
T1034 1672-1773 Sentence denotes 2012). e) Smartphone-enabled signal processing for field-based environmental monitoring (Jiang et al.
T1035 1774-1780 Sentence denotes 2014).
T1036 1781-1914 Sentence denotes In addition to reducing the material cost per device, efforts to reduce the manufacturing cost of biosensors have also been examined.
T1037 1915-1995 Sentence denotes 3D printing processes have emerged as popular methods for biosensor fabrication.
T1038 1996-2071 Sentence denotes For example, 3D printing is compatible with flexible and curved substrates.
T1039 2072-2255 Sentence denotes 3D printing has also been used for the fabrication of various components of electrochemical biosensors, such as electrodes, substrates, fluid handling components, or device packaging.
T1040 2256-2386 Sentence denotes In particular, 3D printing has emerged as a useful fabrication platform for microfluidic-based analytical platforms (Waheed et al.
T1041 2387-2393 Sentence denotes 2016).
T1042 2394-2507 Sentence denotes For example, to date, 3D printing has enabled the fabrication of electrode-integrated microfluidics (Erkal et al.
T1043 2508-2577 Sentence denotes 2014), 3D microfluidics, organ-conforming microfluidics (Singh et al.
T1044 2578-2642 Sentence denotes 2017a), and transducer-integrated microfluidics (Cesewski et al.
T1045 2643-2649 Sentence denotes 2018).
T1046 2650-2813 Sentence denotes Thus, 3D printing may serve as an important fabrication platform for the creation of wearable microfluidic-based electrochemical biosensors for pathogen detection.
T1047 2814-2982 Sentence denotes The ability to quantify the level of pathogens on the surfaces of objects (e.g., skin, food, and medical equipment) remains a present challenge in the biosensing field.
T1048 2983-3101 Sentence denotes Wearable biomedical devices have emerged as promising tools for point-of-care (POC) diagnostics and health monitoring.
T1049 3102-3203 Sentence denotes The application constraints of wearable devices require them to be lightweight and simple to operate.
T1050 3204-3414 Sentence denotes Wearable devices can provide continuous monitoring of body fluids, such as blood and sweat, allowing patients to obtain real-time bioanalytical information without the inconvenience of facility-based screening.
T1051 3415-3586 Sentence denotes To date, biosensors have been incorporated into a variety of wearable devices, including contact lenses, clothing, bandages, rings, and tattoos (Bandodkar and Wang, 2014).
T1052 3587-3690 Sentence denotes This is a rapidly emerging area linked to smartphone technology for biosensor actuation and monitoring.
T1053 3691-3876 Sentence denotes The rise of flexible electronics has also contributed to the success of incorporating electrochemical biosensors into flexible textiles, which has enhanced their wearability (Rim et al.
T1054 3877-3883 Sentence denotes 2016).
T1055 3884-4085 Sentence denotes Although most wearable electrochemical biosensors are used to detect small molecules, such as lactate, glucose, or electrolytes, there is increasing interest in their application to pathogen detection.
T1056 4086-4241 Sentence denotes Challenges include biocompatibility (e.g., reduction of skin irritation), device power consumption, and biosensor-tissue mechanical and geometric matching.
T1057 4242-4449 Sentence denotes Because of the small sample size of body fluid secretions and the need to transport the sample to the electrode surface, microfluidic formats are now emerging for wearable bioanalytical systems (Singh et al.
T1058 4450-4457 Sentence denotes 2017a).
T1059 4459-4485 Sentence denotes 5.2 Detection of protozoa
T1060 4486-4654 Sentence denotes Importantly, the size of the pathogen may have a significant impact on a given electrochemical biosensor's performance based on the type of electrochemical method used.
T1061 4655-4735 Sentence denotes For example, pathogens can range greater than three orders of magnitude in size.
T1062 4736-4815 Sentence denotes For example, the diameter of norovirus was estimated at 27 nm (Robilotti et al.
T1063 4816-4887 Sentence denotes 2015), while the diameter of G. lamblia oocysts is ~14 μm (Adam, 2001).
T1064 4888-5000 Sentence denotes Electrochemical biosensors for the detection of protozoa-based pathogens is an area requiring further attention.
T1065 5001-5204 Sentence denotes Protozoa, as large pathogens, achieve relatively less coverage of the electrode than small pathogens, thereby having a relatively smaller effect on charge transfer at the electrode-electrolyte interface.
T1066 5205-5325 Sentence denotes C. parvum is at present the most commonly detected protozoa using electrochemical biosensors (see Table 1) (Iqbal et al.
T1067 5326-5344 Sentence denotes 2015) (Luka et al.
T1068 5345-5351 Sentence denotes 2019).
T1069 5353-5386 Sentence denotes 5.3 Detection of plant pathogens
T1070 5387-5677 Sentence denotes While the majority of infectious agents detected using electrochemical biosensors are human pathogens, emerging agricultural applications of electrochemical biosensors, such as in smart agriculture, suggest the need for biosensors capable of detecting plant pathogens (Khater et al., 2017).
T1071 5678-5857 Sentence denotes For example, crop yield losses associated with plant pathogens range from 8.1 to 41.1% based on global production of wheat, rice, maize, potato, and soybean (Savary et al., 2019).
T1072 5858-5938 Sentence denotes Common plant pathogens include viruses, viroids, bacteria, fungi, and oomycetes.
T1073 5939-6108 Sentence denotes Chartuprayoon et al. recently established a polypyrrole nanoribbon-based chemiresistive immunosensor for detection of viral plant pathogens (Chartuprayoon et al., 2013).
T1074 6110-6136 Sentence denotes 5.4 Multiplexed detection
T1075 6137-6278 Sentence denotes Multiplexed detection of pathogens has emerged as a technique for phenotype identification and identification of multiple pathogenic threats.
T1076 6279-6434 Sentence denotes Multiplexing can be achieved via various approaches, but typically involves the use of multiple transducers that exhibit different biorecognition elements.
T1077 6435-6603 Sentence denotes For example, a strategy for multiplexed bacterial detection by Li et al. via immobilization of anti-E. coli and anti-V. cholerae on AuNPs is shown in Fig. 4b (Li et al.
T1078 6604-6610 Sentence denotes 2017).
T1079 6611-6743 Sentence denotes Spatially-distributed biorecognition elements on a single electrode or multiple electrodes can also provide multiplexing capability.
T1080 6744-6916 Sentence denotes For example, a strategy based on the immobilization of anti-E. coli and anti-S. aureus within a microfluidic chamber created by Tian et al. is shown in Fig. 4c (Tian et al.
T1081 6917-6923 Sentence denotes 2016).
T1082 6925-6975 Sentence denotes 5.5 Saturation-free continuous monitoring formats
T1083 6976-7099 Sentence denotes The inability to regenerate biosensors is a major hindrance to biosensor-based process monitoring and control applications.
T1084 7100-7301 Sentence denotes While various biosensors must be disposed of after a single use, the regeneration of biosensor surfaces using chemical approaches has been leveraged as an approach for creating multiple-use biosensors.
T1085 7302-7497 Sentence denotes Biosensor regeneration approaches typically involve chemically-mediated dissociation of the target from the immobilized biorecognition element or removal of the biorecognition element altogether.
T1086 7498-7711 Sentence denotes This can be accomplished through acid-base mediated regeneration, detergents, glycine, and urea as well as achieved by thermal regeneration, plasma cleaning, or even direct electrochemical desorption (Goode et al.
T1087 7712-7730 Sentence denotes 2015; Huang et al.
T1088 7731-7758 Sentence denotes 2010; Zelada-Guillen et al.
T1089 7759-7765 Sentence denotes 2010).
T1090 7766-7989 Sentence denotes For example, Dweik et al. used a combination of organic (acetone) and plasma cleaning protocols to regenerate an Au interdigitated microelectrode array after detection of E. coli to use devices five times each (Dweik et al.
T1091 7990-7996 Sentence denotes 2012).
T1092 7997-8277 Sentence denotes Johnson and Mutharasan used a liquid-phase hydrogen peroxide-mediated UV-photooxidation process for regeneration of biosensor surfaces as an alternative to aggressive chemical treatments, such as those based on the use of high- or low-pH solutions (Johnson and Mutharasan, 2013b).
T1093 8278-8523 Sentence denotes We note that an ideal biosensor regeneration (i.e., cleaning) approach for process monitoring applications would remove the captured target in situ using a chemical-free approach and preserve the biorecognition layer for subsequent measurements.
T1094 8525-8570 Sentence denotes 5.6 Low-cost, single-use portable biosensors
T1095 8571-8692 Sentence denotes The creation of environmentally-friendly disposable substrates is a present challenge for low-cost single-use biosensors.
T1096 8693-8812 Sentence denotes Paper-based substrates have recently emerged as attractive alternatives to costlier ceramic substrates (Martinez et al.
T1097 8813-8819 Sentence denotes 2009).
T1098 8820-8938 Sentence denotes Paper-based substrates can also eliminate the need for supporting fluid handling components through capillary effects.
T1099 8939-9064 Sentence denotes For example, paper substrates can be patterned with hydrophobic and hydrophilic regions to direct fluid flow (Carrilho et al.
T1100 9065-9071 Sentence denotes 2009).
T1101 9072-9194 Sentence denotes Paper-based devices are also relatively environmentally friendly in terms of material sourcing, disposal, and degradation.
T1102 9195-9427 Sentence denotes However, the potential toxicity of materials that may have been deposited on paper substrates, such as nanomaterials, should still be considered when assessing the environmental impact of a disposable single-use biosensing platform.
T1103 9428-9565 Sentence denotes For example, the long-term environmental and health impacts of nanomaterials remain active areas of research (Colvin, 2003; Klaine et al.
T1104 9566-9583 Sentence denotes 2008; Lead et al.
T1105 9584-9590 Sentence denotes 2018).
T1106 9591-9785 Sentence denotes Although paper-based devices have historically been most commonly used with colorimetric sensing techniques, they have been increasingly investigated for electrochemical biosensing (Ahmed et al.
T1107 9786-9807 Sentence denotes 2016; Meredith et al.
T1108 9808-9814 Sentence denotes 2016).
T1109 9815-9876 Sentence denotes A highlight of paper-based substrates is provided in Fig. 7c.
T1110 9877-10030 Sentence denotes The need for water safety and medical diagnostics in remote and under-developed regions has led to the demand for low-cost portable biosensing platforms.
T1111 10031-10267 Sentence denotes One of the major challenges in creating portable biosensors for field use is the need to establish sample preparation-free protocols (Johnson and Mutharasan, 2012) and miniaturize components for actuation, data acquisition, and readout.
T1112 10268-10404 Sentence denotes However, device miniaturization also presents measurement challenges, such as increasing the biosensor signal-to-noise ratio (Wei et al.
T1113 10405-10411 Sentence denotes 2009).
T1114 10412-10583 Sentence denotes Further, portable biosensing platforms should exhibit biorecognition elements that remain stable for extended periods and at a variety of temperatures and humidity levels.
T1115 10584-10803 Sentence denotes The measurement robustness associated with the analysis of small sample volumes also requires further attention with the use of emerging low-cost materials, fabrication approaches, and transduction methods (Kumar et al.
T1116 10804-10822 Sentence denotes 2013; Luppa et al.
T1117 10823-10854 Sentence denotes 2016; Narayan, 2016; Wan et al.
T1118 10855-10861 Sentence denotes 2013).
T1119 10862-11195 Sentence denotes The elimination of sample preparation steps from biosensor-based assays represents a significant advantage relative to traditional bioanalytical techniques (Johnson and Mutharasan, 2012) and is an important advantage and consideration for single-use biosensors and remote biosensing applications based on portable low-cost platforms.
T1120 11196-11355 Sentence denotes Sample preparation-free protocols can improve measurement confidence, repeatability, and reduce TTR, which are important aspects of healthcare decision-making.
T1121 11356-11522 Sentence denotes For example, it has been shown that a reduction in turnaround time for diagnostic assays could have a positive effect on clinical treatment outcomes (Davenport et al.
T1122 11523-11539 Sentence denotes 2017; Sin et al.
T1123 11540-11546 Sentence denotes 2014).
T1124 11547-11738 Sentence denotes When sample preparation is required, integrated alternatives to manual techniques, such as microfluidic processes, may provide a new path toward achieving rapid and robust pathogen detection.
T1125 11739-12009 Sentence denotes For example, separation and pre-concentration steps have been increasingly examined for integration with microfluidic-based biosensor platforms to reduce the number of steps, materials needed, and required technical personnel, and thus TTR (Bunyakul and Baeumner, 2014).
T1126 12011-12048 Sentence denotes 5.7 Wireless transduction approaches
T1127 12049-12314 Sentence denotes The examination of wireless transduction and monitoring approaches has an important role in creating portable and wearable biosensing platforms for pathogen detection and distributed sensing systems for infection control and process monitoring (Ghafar-Zadeh, 2015).
T1128 12315-12485 Sentence denotes Wireless biosensing platforms are also essential to the creation of implantable and integrated biosensors for pathogen detection, including those for medical diagnostics.
T1129 12486-12672 Sentence denotes For example, as previously referenced, Mannoor et al. fabricated a conformal biosensor for bacteria detection on tooth enamel based on a radiofrequency (RF) link approach (Mannoor et al.
T1130 12673-12693 Sentence denotes 2012) (see Fig. 7d).
T1131 12694-12775 Sentence denotes Wireless transduction approaches remains an emerging area for pathogen detection.
T1132 12776-12898 Sentence denotes An example of smartphone-enabled wireless signal processing for detection of E. coli can be found in Fig. 7e (Jiang et al.
T1133 12899-12905 Sentence denotes 2014).

2_test

Id Subject Object Predicate Lexical cue
32364936-26695279-7713178 688-692 26695279 denotes 2016
32364936-23811484-7713179 714-718 23811484 denotes 2013
32364936-26695279-7713180 1260-1264 26695279 denotes 2016
32364936-26695279-7713181 1431-1435 26695279 denotes 2016
32364936-23811484-7713182 1488-1492 23811484 denotes 2013
32364936-22453836-7713183 1672-1676 22453836 denotes 2012
32364936-27146365-7713184 2387-2391 27146365 denotes 2016
32364936-24763966-7713185 2508-2512 24763966 denotes 2014
32364936-29897358-7713187 2643-2647 29897358 denotes 2018
32364936-24853270-7713188 3580-3584 24853270 denotes 2014
32364936-26898945-7713189 3877-3881 26898945 denotes 2016
32364936-25567225-7713191 4816-4820 25567225 denotes 2015
32364936-11432808-7713192 4881-4885 11432808 denotes 2001
32364936-27818053-7713193 5671-5675 27818053 denotes 2017
32364936-30718852-7713194 5851-5855 30718852 denotes 2019
32364936-28382165-7713195 6604-6608 28382165 denotes 2017
32364936-25402969-7713196 7712-7716 25402969 denotes 2015
32364936-19932018-7713197 7731-7735 19932018 denotes 2010
32364936-20961052-7713198 7759-7763 20961052 denotes 2010
32364936-22608418-7713199 7990-7994 22608418 denotes 2012
32364936-20337388-7713200 9065-9069 20337388 denotes 2009
32364936-14520401-7713201 9546-9550 14520401 denotes 2003
32364936-19086204-7713202 9566-9570 19086204 denotes 2008
32364936-29633323-7713203 9584-9588 29633323 denotes 2018
32364936-26410389-7713204 9786-9790 26410389 denotes 2016
32364936-26901771-7713205 9808-9812 26901771 denotes 2016
32364936-23101954-7713206 10189-10193 23101954 denotes 2012
32364936-19606287-7713207 10405-10409 19606287 denotes 2009
32364936-24019250-7713208 10804-10808 24019250 denotes 2013
32364936-26808189-7713209 10823-10827 26808189 denotes 2016
32364936-23542064-7713210 10855-10859 23542064 denotes 2013
32364936-23101954-7713211 11043-11047 23101954 denotes 2012
32364936-28248946-7713212 11523-11527 28248946 denotes 2017
32364936-24524681-7713213 11540-11544 24524681 denotes 2014
32364936-25558994-7713214 12003-12007 25558994 denotes 2014
32364936-25648709-7713215 12308-12312 25648709 denotes 2015
32364936-22453836-7713216 12673-12677 22453836 denotes 2012