PMC:7116472 / 12211-12499
Annnotations
LitCovid-PubTator
{"project":"LitCovid-PubTator","denotations":[{"id":"205","span":{"begin":10,"end":19},"obj":"Disease"}],"attributes":[{"id":"A205","pred":"tao:has_database_id","subj":"205","obj":"MESH:D003643"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"We used a mortality label and design matrix of centred or standardised continuous and categorical variables including all candidate variables to train gradient boosted trees minimising the binary classification error rate (defined as number of wrong cases divided by number of all cases)."}
LitCovid-sentences
{"project":"LitCovid-sentences","denotations":[{"id":"T82","span":{"begin":0,"end":288},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"We used a mortality label and design matrix of centred or standardised continuous and categorical variables including all candidate variables to train gradient boosted trees minimising the binary classification error rate (defined as number of wrong cases divided by number of all cases)."}