PMC:7047374 / 18389-20509 JSONTXT

Annnotations TAB JSON ListView MergeView

    LitCovid-PD-CLO

    {"project":"LitCovid-PD-CLO","denotations":[{"id":"T155","span":{"begin":282,"end":283},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T156","span":{"begin":407,"end":408},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T157","span":{"begin":692,"end":693},"obj":"http://purl.obolibrary.org/obo/CLO_0001021"},{"id":"T158","span":{"begin":810,"end":811},"obj":"http://purl.obolibrary.org/obo/CLO_0001021"}],"text":"In the matrix: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ A=\\frac{\\left(1-{\\delta}_P\\right){\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)} $$\\end{document}A=1−δPωPωP+mPγP+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ B=\\frac{\\delta_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)} $$\\end{document}B=δPωPωP+mPγp′+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ D=\\frac{\\left(1-{\\delta}_P\\right){\\mu \\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)\\varepsilon }+\\frac{\\mu^{\\prime }{\\delta}_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)\\varepsilon } $$\\end{document}D=1−δPμωPωP+mPγP+mPε+μ′δPωPωP+mPγp′+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ E=\\frac{\\mu }{\\left({\\gamma}_P+{m}_P\\right)\\varepsilon } $$\\end{document}E=μγP+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ G=\\frac{\\mu^{\\prime }}{\\left({\\gamma}_p^{\\prime }+{m}_P\\right)\\varepsilon } $$\\end{document}G=μ′γp′+mPε"}

    LitCovid-PD-CHEBI

    {"project":"LitCovid-PD-CHEBI","denotations":[{"id":"T120","span":{"begin":368,"end":373},"obj":"Chemical"},{"id":"T121","span":{"begin":761,"end":766},"obj":"Chemical"},{"id":"T122","span":{"begin":1184,"end":1189},"obj":"Chemical"},{"id":"T123","span":{"begin":1301,"end":1306},"obj":"Chemical"},{"id":"T124","span":{"begin":1690,"end":1695},"obj":"Chemical"},{"id":"T125","span":{"begin":2048,"end":2053},"obj":"Chemical"}],"attributes":[{"id":"A120","pred":"chebi_id","subj":"T120","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"},{"id":"A121","pred":"chebi_id","subj":"T121","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"},{"id":"A122","pred":"chebi_id","subj":"T122","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"},{"id":"A123","pred":"chebi_id","subj":"T123","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"},{"id":"A124","pred":"chebi_id","subj":"T124","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"},{"id":"A125","pred":"chebi_id","subj":"T125","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"}],"text":"In the matrix: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ A=\\frac{\\left(1-{\\delta}_P\\right){\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)} $$\\end{document}A=1−δPωPωP+mPγP+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ B=\\frac{\\delta_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)} $$\\end{document}B=δPωPωP+mPγp′+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ D=\\frac{\\left(1-{\\delta}_P\\right){\\mu \\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)\\varepsilon }+\\frac{\\mu^{\\prime }{\\delta}_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)\\varepsilon } $$\\end{document}D=1−δPμωPωP+mPγP+mPε+μ′δPωPωP+mPγp′+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ E=\\frac{\\mu }{\\left({\\gamma}_P+{m}_P\\right)\\varepsilon } $$\\end{document}E=μγP+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ G=\\frac{\\mu^{\\prime }}{\\left({\\gamma}_p^{\\prime }+{m}_P\\right)\\varepsilon } $$\\end{document}G=μ′γp′+mPε"}

    LitCovid-sentences

    {"project":"LitCovid-sentences","denotations":[{"id":"T149","span":{"begin":0,"end":2120},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"In the matrix: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ A=\\frac{\\left(1-{\\delta}_P\\right){\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)} $$\\end{document}A=1−δPωPωP+mPγP+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ B=\\frac{\\delta_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)} $$\\end{document}B=δPωPωP+mPγp′+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ D=\\frac{\\left(1-{\\delta}_P\\right){\\mu \\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)\\varepsilon }+\\frac{\\mu^{\\prime }{\\delta}_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)\\varepsilon } $$\\end{document}D=1−δPμωPωP+mPγP+mPε+μ′δPωPωP+mPγp′+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ E=\\frac{\\mu }{\\left({\\gamma}_P+{m}_P\\right)\\varepsilon } $$\\end{document}E=μγP+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ G=\\frac{\\mu^{\\prime }}{\\left({\\gamma}_p^{\\prime }+{m}_P\\right)\\varepsilon } $$\\end{document}G=μ′γp′+mPε"}