> top > docs > PMC:7047374 > spans > 18389-20509 > annotations

PMC:7047374 / 18389-20509 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T155 282-283 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T156 407-408 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T157 692-693 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T158 810-811 http://purl.obolibrary.org/obo/CLO_0001021 denotes B

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T120 368-373 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T121 761-766 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T122 1184-1189 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T123 1301-1306 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T124 1690-1695 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T125 2048-2053 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T149 0-2120 Sentence denotes In the matrix: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A=\frac{\left(1-{\delta}_P\right){\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)} $$\end{document}A=1−δPωPωP+mPγP+mP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ B=\frac{\delta_P{\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_p^{\prime }+{m}_P\right)} $$\end{document}B=δPωPωP+mPγp′+mP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D=\frac{\left(1-{\delta}_P\right){\mu \upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)\varepsilon }+\frac{\mu^{\prime }{\delta}_P{\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_p^{\prime }+{m}_P\right)\varepsilon } $$\end{document}D=1−δPμωPωP+mPγP+mPε+μ′δPωPωP+mPγp′+mPε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E=\frac{\mu }{\left({\gamma}_P+{m}_P\right)\varepsilon } $$\end{document}E=μγP+mPε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G=\frac{\mu^{\prime }}{\left({\gamma}_p^{\prime }+{m}_P\right)\varepsilon } $$\end{document}G=μ′γp′+mPε