PMC:7047374 / 18389-20509
Annnotations
LitCovid-PD-CLO
Id | Subject | Object | Predicate | Lexical cue |
---|---|---|---|---|
T155 | 282-283 | http://purl.obolibrary.org/obo/CLO_0001020 | denotes | A |
T156 | 407-408 | http://purl.obolibrary.org/obo/CLO_0001020 | denotes | A |
T157 | 692-693 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | B |
T158 | 810-811 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | B |
LitCovid-PD-CHEBI
Id | Subject | Object | Predicate | Lexical cue | chebi_id |
---|---|---|---|---|---|
T120 | 368-373 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T121 | 761-766 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T122 | 1184-1189 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T123 | 1301-1306 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T124 | 1690-1695 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T125 | 2048-2053 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
LitCovid-sentences
Id | Subject | Object | Predicate | Lexical cue |
---|---|---|---|---|
T149 | 0-2120 | Sentence | denotes | In the matrix: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A=\frac{\left(1-{\delta}_P\right){\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)} $$\end{document}A=1−δPωPωP+mPγP+mP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ B=\frac{\delta_P{\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_p^{\prime }+{m}_P\right)} $$\end{document}B=δPωPωP+mPγp′+mP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D=\frac{\left(1-{\delta}_P\right){\mu \upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)\varepsilon }+\frac{\mu^{\prime }{\delta}_P{\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_p^{\prime }+{m}_P\right)\varepsilon } $$\end{document}D=1−δPμωPωP+mPγP+mPε+μ′δPωPωP+mPγp′+mPε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E=\frac{\mu }{\left({\gamma}_P+{m}_P\right)\varepsilon } $$\end{document}E=μγP+mPε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G=\frac{\mu^{\prime }}{\left({\gamma}_p^{\prime }+{m}_P\right)\varepsilon } $$\end{document}G=μ′γp′+mPε |