PMC:6723693 / 49583-51166 JSONTXT

Annnotations TAB JSON ListView MergeView

{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/6723693","sourcedb":"PMC","sourceid":"6723693","source_url":"https://www.ncbi.nlm.nih.gov/pmc/6723693","text":"The analysis of each heparin/self-assembled dendrimer complex MD trajectory revealed that the micelles formed by C16SPD productively engaged 12 out of 13 available dendrons in polyanion binding, resulting in a charge-normalized, per-effective-residue free energy of binding ∆G* of −14.98 kJ/mol. On the other hand, the other two nanostructures exploited only 9/16 (C16G0) and 6/10 (C16SPM) residues in productive binding, resulting in lower ∆G* values of −8.65 and −11.97 kJ/mol, respectively. The in silico data were thus in agreement with the trend exhibited by the corresponding experimental CE50/ITC values, that is the affinity of the three self-assembled dendrimers for heparin decreases in the order C16SPD \u003e C16SPM \u003e C16G0. To get further details on the heparin binding by these three nanosystems, we reconsidered ITC data, and precisely the deconvolution of ∆Gbind into its enthalpic (∆H) and entropic (T∆S) components. These data revealed that the C16SPD self-assembled dendrimer attains the most favorable enthalpic contribution upon adapting and subsequently optimizing its interaction with the polyanion (∆H = −4.9 kJ/mol) with respect to the other two nanomicelles, for which ∆H = −1.9 kJ/mol (C16G0) and −2.6 kJ/mol (C16SPM), respectively. Notwithstanding the fact that the entropic penalty for the self-assembled dendrimer C16SPD was not the best in the series (T∆S = 0.0, 0.3, and 2.3 kJ/mol for C16SPD, C16G0, and C16SPM, respectively), the overall binding in all cases preserved its enthalpy-driven nature, confirming the heparin best binding properties of C16SPD.","tracks":[]}