PMC:5003481 / 102-1868
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/5003481","sourcedb":"PMC","sourceid":"5003481","source_url":"https://www.ncbi.nlm.nih.gov/pmc/5003481","text":"Cardiovascular development is a complex process in which several transcriptional pathways are operative, providing instructions to the developing cardiomyocytes, while coping with contraction and morphogenetic movements to shape the mature heart. The discovery of microRNAs has added a new layer of complexity to the molecular mechanisms governing the formation of the heart. Discrete genetic ablation of the microRNAs processing enzymes, such as Dicer and Drosha, has highlighted the functional roles of microRNAs during heart development. Importantly, selective deletion of a single microRNA, miR-1-2, results in an embryonic lethal phenotype in which both morphogenetic, as well as impaired conduction, phenotypes can be observed. In an effort to grasp the variability of microRNA expression during cardiac morphogenesis, we recently reported the dynamic expression profile during ventricular development, highlighting the importance of miR-27 on the regulation of a key cardiac transcription factor, Mef2c. In this review, we compare the microRNA expression profile in distinct models of cardiogenesis, such as ventricular chamber development, induced pluripotent stem cell (iPS)-derived cardiomyocytes and the aging heart. Importantly, out of 486 microRNAs assessed in the developing heart, 11% (55) displayed increased expression, many of which are also differentially expressed in distinct cardiogenetic experimental models, including iPS-derived cardiomyocytes. A review on the functional analyses of these differentially expressed microRNAs will be provided in the context of cardiac development, highlighting the resolution and power of microarrays analyses on the quest to decipher the most relevant microRNAs in the developing, aging and diseased heart.\n","tracks":[]}