PMC:3396637 / 856-2302 JSONTXT

Annnotations TAB JSON ListView MergeView

{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/3396637","sourcedb":"PMC","sourceid":"3396637","source_url":"https://www.ncbi.nlm.nih.gov/pmc/3396637","text":"Principal findings\nOur analysis is focused on evolutional features of TEs and SSs in the intronic sequence of twelve selected mammalian genomes. We divided them into four groups—primates, large mammals, rodents, and primary mammals—and used four non-mammalian vertebrate species as the out-group. After classifying intron size variation in an intron-centric way based on RS-dominance (TE-dominant or SS-dominant intron expansions), we observed several distinct profiles in intron length and positioning in different vertebrate lineages, such as retrotransposon-dominance in mammals and DNA transposon-dominance in the lower vertebrates, amphibians and fishes. The RS patterns of mouse and rat genes are most striking, which are not only distinct from those of other mammals but also different from that of the third rodent species analyzed in this study—guinea pig. Looking into the biological functions of relevant genes, we observed a two-dimensional divergence; in particular, genes that possess SS-dominant and/or RS-free introns are enriched in tissue-specific development and transcription regulation in all mammalian lineages. In addition, we found that the tendency of transposons in increasing intron size is much stronger than that of satellites, and the combined effect of both RSs is greater than either one of them alone in a simple arithmetic sum among the mammals and the opposite is found among the four non-mammalian vertebrates.","divisions":[{"label":"title","span":{"begin":0,"end":18}}],"tracks":[]}