PMC:13916 / 1259-3283
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/13916","sourcedb":"PMC","sourceid":"13916","source_url":"http://www.ncbi.nlm.nih.gov/pmc/13916","text":"Introduction:\nGermline mutations in the breast and ovarian cancer susceptibility gene BRCA1, which is located on chromosome 17q21, are associated with a predisposition to the development of cancer in these organs [1,2]. No mutations in the BRCA1 gene have been detected in sporadic breast cancer cases, but mutations have been detected in sporadic cases of ovarian cancer [3,4]. Although there is debate regarding the level of cancer risk associated with mutations in BRCA1 and the significance of the lack of mutations in sporadic tumors, it is possible that alterations in the function of BRCA1 may occur by mechanisms other than mutation, leading to an underestimation of risk when it is calculated solely on the basis of mutational analysis. Such alterations cannot be identified until the function and regulation of BRCA1 are better understood.\nThe BRCA1 gene encodes a 220-kDa nuclear phosphoprotein that is regulated in response to DNA damaging agents [5,6,7] and in response to estrogen-induced growth [8,9,10,11]. Germline mutations that cause breast and ovarian cancer predisposition frequently result in truncated and presumably inactive BRCA1 protein [12].\nBG-1 cells were derived from a patient with stage III, poorly differentiated ovarian adenocarcinoma [13]. This cell line, which expresses wild-type BRCA1, is estrogen responsive and withdrawal of estrogen results in eventual cell death. Previous studies suggest that BRCA1 is stimulated as a result of estrogen treatment [8,9,10,11], and also that BRCA1 may be involved in the cell death process [14]. Therefore, we examined the effect of reduction of BRCA1 levels in BG-1 cells on the cellular response to hormone depletion as well as estrogen stimulation. The results suggest that reduced levels of BRCA1 correlates with a survival advantage when BG-1 cells are placed under growth-restrictive and hormone-depleted conditions. In optimum growth conditions, significantly reduced levels of BRCA1 correlates with enhanced growth both in vitro and in vivo.","divisions":[{"label":"Title","span":{"begin":0,"end":13}}],"tracks":[]}