PubMed:12136096 JSONTXT

Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram-positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram-negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram-positive bacterium; non-regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene.

Annnotations TAB TSV DIC JSON TextAE-old TextAE

  • Denotations: 0
  • Blocks: 0
  • Relations: 0