PubMed:6135417
Annnotations
ngly1-sample4
{"project":"ngly1-sample4","denotations":[{"id":"T1","span":{"begin":777,"end":788},"obj":"hgnc:24622"},{"id":"T2","span":{"begin":750,"end":773},"obj":"hgnc:24622"}],"text":"Biosynthesis of intestinal microvillar proteins. Processing of aminopeptidase N by microsomal membranes.\nThe biosynthesis of small-intestinal aminopeptidase N (EC 3.4.11.2) was studied in a cell-free translation system derived from rabbit reticulocytes. When dog pancreatic microsomal fractions were present during translation, most of the aminopeptidase N synthesized was found in a membrane-bound rather than a soluble form, indicating that synthesis of the enzyme takes place on ribosomes attached to the rough endoplasmic reticulum. The microsomal fractions process the Mr-115 000 polypeptide, which is the primary translation product of aminopeptidase N, to a polypeptide of Mr 140 000. This was found to be sensitive to the action of endo-beta-N-acetylglucosaminidase H (EC 3.2.1.96), showing that aminopeptidase N undergoes transmembrane glycosylation during synthesis. The position of the signal sequence in aminopeptidase N was determined by a synchronized translation experiment. It was found that microsomal fractions should be added before about 25% of the polypeptide was synthesized to ensure processing to the high-mannose glycosylated form. This suggests that the signal sequence is situated in the N-terminal part of the aminopeptidase N. The size of the cell-free translation product in the absence of microsomal fractions was found to be similar to that on one of the forms of the enzyme obtained from tunicamycin-treated organ-cultured intestinal explants."}
NGLY1-deficiency
{"project":"NGLY1-deficiency","denotations":[{"id":"PD-NGLY1-deficiency-B_T1","span":{"begin":740,"end":773},"obj":"hgnc:24622"}],"namespaces":[{"prefix":"hgnc","uri":"https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:"},{"prefix":"omim","uri":"https://www.omim.org/entry/"},{"prefix":"chem","uri":"https://pubchem.ncbi.nlm.nih.gov/compound/"}],"text":"Biosynthesis of intestinal microvillar proteins. Processing of aminopeptidase N by microsomal membranes.\nThe biosynthesis of small-intestinal aminopeptidase N (EC 3.4.11.2) was studied in a cell-free translation system derived from rabbit reticulocytes. When dog pancreatic microsomal fractions were present during translation, most of the aminopeptidase N synthesized was found in a membrane-bound rather than a soluble form, indicating that synthesis of the enzyme takes place on ribosomes attached to the rough endoplasmic reticulum. The microsomal fractions process the Mr-115 000 polypeptide, which is the primary translation product of aminopeptidase N, to a polypeptide of Mr 140 000. This was found to be sensitive to the action of endo-beta-N-acetylglucosaminidase H (EC 3.2.1.96), showing that aminopeptidase N undergoes transmembrane glycosylation during synthesis. The position of the signal sequence in aminopeptidase N was determined by a synchronized translation experiment. It was found that microsomal fractions should be added before about 25% of the polypeptide was synthesized to ensure processing to the high-mannose glycosylated form. This suggests that the signal sequence is situated in the N-terminal part of the aminopeptidase N. The size of the cell-free translation product in the absence of microsomal fractions was found to be similar to that on one of the forms of the enzyme obtained from tunicamycin-treated organ-cultured intestinal explants."}