PubMed:32917722 / 45-56
Sphingosine prevents binding of SARS-CoV-2 spike to its cellular receptor ACE2.
Sphingosine has been shown to prevent and eliminate bacterial infections of the respiratory tract, but it is unknown whether sphingosine can be also employed to prevent viral infections. To test this hypothesis, we analyzed whether sphingosine regulates the infection of cultured and freshly isolated ex vivohuman epithelial cells with pseudoviral particles expressing SARS-CoV-2 spike (pp-VSV-SARS-CoV-2 spike) that served as a bona fide system mimicking SARS-CoV-2 infection. We demonstrate that exogenously applied sphingosine suspended in 0.9% NaCl prevents cellular infection with pp-SARS-CoV-2 spike. Pre-treatment of cultured Vero epithelial cells or freshly isolated human nasal epithelial cells with low concentrations of sphingosine prevented adhesion of and infection with pp-VSV-SARS-CoV-2 spike. Mechanistically, we demonstrate that sphingosine binds to ACE2, the cellular receptor of SARS-CoV-2, and prevents the interaction of the receptor binding domain of the viral spike protein with ACE2. These data indicate that sphingosine prevents at least some viral infections by interfering with the interaction of the virus with its receptor. Our data also suggest that further preclinical and finally clinical examination of sphingosine is warranted for potential use as a prophylactic or early treatment for coronavirus disease-19.
|