> top > docs > PubMed:32168464 > spans > 574-727 > annotations

PubMed:32168464 / 574-727 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-OGER-BB

Id Subject Object Predicate Lexical cue
T8 30-35 GO:0016265 denotes death

LitCovid-PAS-Enju

Id Subject Object Predicate Lexical cue
EnjuParser_T103 0-3 PRP-DOLLAR- denotes Our
EnjuParser_T104 4-13 NNS denotes estimates
EnjuParser_T105 14-16 IN denotes of
EnjuParser_T106 17-20 DT denotes the
EnjuParser_T107 21-25 NN denotes risk
EnjuParser_T108 26-29 IN denotes for
EnjuParser_T109 30-35 NN denotes death
EnjuParser_T110 36-38 IN denotes in
EnjuParser_T111 39-44 NNP denotes Wuhan
EnjuParser_T112 45-52 VBD denotes reached
EnjuParser_T113 53-59 NNS denotes values
EnjuParser_T114 60-62 RB denotes as
EnjuParser_T115 63-67 JJ denotes high
EnjuParser_T116 68-70 IN denotes as
EnjuParser_T117 71-73 CD denotes 12
EnjuParser_T118 73-74 NN denotes %
EnjuParser_T119 75-77 IN denotes in
EnjuParser_T120 78-81 DT denotes the
EnjuParser_T121 82-91 NN denotes epicenter
EnjuParser_T122 92-94 IN denotes of
EnjuParser_T123 95-98 DT denotes the
EnjuParser_T124 99-107 JJ denotes epidemic
EnjuParser_T125 108-111 CC denotes and
EnjuParser_T126 112-114 CD denotes ≈1
EnjuParser_T127 114-115 NN denotes %
EnjuParser_T128 116-118 IN denotes in
EnjuParser_T129 119-124 JJ denotes other
EnjuParser_T130 124-125 -COMMA- denotes ,
EnjuParser_T131 126-130 RBR denotes more
EnjuParser_T132 131-137 RB denotes mildly
EnjuParser_T133 138-146 VBN denotes affected
EnjuParser_T134 147-152 NNS denotes areas
EnjuParser_R103 EnjuParser_T104 EnjuParser_T103 arg1Of estimates,Our
EnjuParser_R104 EnjuParser_T104 EnjuParser_T105 arg1Of estimates,of
EnjuParser_R105 EnjuParser_T107 EnjuParser_T105 arg2Of risk,of
EnjuParser_R106 EnjuParser_T107 EnjuParser_T106 arg1Of risk,the
EnjuParser_R107 EnjuParser_T107 EnjuParser_T108 arg1Of risk,for
EnjuParser_R108 EnjuParser_T109 EnjuParser_T108 arg2Of death,for
EnjuParser_R109 EnjuParser_T107 EnjuParser_T110 arg1Of risk,in
EnjuParser_R110 EnjuParser_T111 EnjuParser_T110 arg2Of Wuhan,in
EnjuParser_R111 EnjuParser_T104 EnjuParser_T112 arg1Of estimates,reached
EnjuParser_R112 EnjuParser_T113 EnjuParser_T112 arg2Of values,reached
EnjuParser_R113 EnjuParser_T115 EnjuParser_T114 arg1Of high,as
EnjuParser_R114 EnjuParser_T113 EnjuParser_T115 arg1Of values,high
EnjuParser_R115 EnjuParser_T115 EnjuParser_T116 arg1Of high,as
EnjuParser_R116 EnjuParser_T118 EnjuParser_T116 arg2Of %,as
EnjuParser_R117 EnjuParser_T118 EnjuParser_T117 arg1Of %,12
EnjuParser_R118 EnjuParser_T112 EnjuParser_T119 arg1Of reached,in
EnjuParser_R119 EnjuParser_T121 EnjuParser_T119 arg2Of epicenter,in
EnjuParser_R120 EnjuParser_T121 EnjuParser_T120 arg1Of epicenter,the
EnjuParser_R121 EnjuParser_T121 EnjuParser_T122 arg1Of epicenter,of
EnjuParser_R122 EnjuParser_T125 EnjuParser_T122 arg2Of and,of
EnjuParser_R123 EnjuParser_T125 EnjuParser_T123 arg1Of and,the
EnjuParser_R124 EnjuParser_T124 EnjuParser_T125 arg1Of epidemic,and
EnjuParser_R125 EnjuParser_T127 EnjuParser_T125 arg2Of %,and
EnjuParser_R126 EnjuParser_T127 EnjuParser_T126 arg1Of %,≈1
EnjuParser_R127 EnjuParser_T125 EnjuParser_T128 arg1Of and,in
EnjuParser_R128 EnjuParser_T134 EnjuParser_T128 arg2Of areas,in
EnjuParser_R129 EnjuParser_T134 EnjuParser_T129 arg1Of areas,other
EnjuParser_R130 EnjuParser_T134 EnjuParser_T130 arg1Of areas,","
EnjuParser_R131 EnjuParser_T132 EnjuParser_T131 arg1Of mildly,more
EnjuParser_R132 EnjuParser_T134 EnjuParser_T132 arg1Of areas,mildly
EnjuParser_R133 EnjuParser_T134 EnjuParser_T133 arg2Of areas,affected

LitCovid-ArguminSci

Id Subject Object Predicate Lexical cue
T5 0-153 DRI_Approach denotes Our estimates of the risk for death in Wuhan reached values as high as 12% in the epicenter of the epidemic and ≈1% in other, more mildly affected areas.

LitCovid-OGER

Id Subject Object Predicate Lexical cue
T2 30-35 GO:0016265 denotes death

LitCovid-sentences-v1

Id Subject Object Predicate Lexical cue
TextSentencer_T5 0-153 Sentence denotes Our estimates of the risk for death in Wuhan reached values as high as 12% in the epicenter of the epidemic and ≈1% in other, more mildly affected areas.

LitCovid-TimeML

Id Subject Object Predicate Lexical cue
tok113 0-3 PRP$ denotes Our
tok114 4-13 NNS denotes estimates
tok115 14-16 IN denotes of
tok116 17-20 DT denotes the
tok117 21-25 NN denotes risk
tok118 26-29 IN denotes for
tok119 30-35 NN denotes death
tok120 36-38 IN denotes in
tok121 39-44 NNP denotes Wuhan
tok122 45-52 VBD denotes reached
tok123 53-59 NNS denotes values
tok124 60-62 RB denotes as
tok125 63-67 JJ denotes high
tok126 68-70 IN denotes as
tok127 71-73 CD denotes 12
tok128 73-74 NN denotes %
tok129 75-77 IN denotes in
tok130 78-81 DT denotes the
tok131 82-91 NN denotes epicenter
tok132 92-94 IN denotes of
tok133 95-98 DT denotes the
tok134 99-107 NN denotes epidemic
tok135 108-111 CC denotes and
tok136 112-113 NN denotes
tok137 113-114 CD denotes 1
tok138 114-115 NN denotes %
tok139 116-118 IN denotes in
tok140 119-124 JJ denotes other
tok141 124-125 , denotes ,
tok142 126-130 RBR denotes more
tok143 131-137 RB denotes mildly
tok144 138-146 VBN denotes affected
tok145 147-152 NNS denotes areas
tok146 152-153 . denotes .
lookup31 36-38 country_code denotes in
lookup32 39-44 location denotes Wuhan
lookup33 60-62 country_code denotes as
lookup34 68-70 country_code denotes as
lookup35 73-74 percent denotes %
lookup36 75-77 country_code denotes in
lookup37 114-115 percent denotes %
lookup38 116-118 country_code denotes in
event9 45-52 OCCURRENCE denotes reached
event11 138-146 OCCURRENCE denotes affected