PubMed:31974493 JSONTXT

Annnotations TAB JSON ListView MergeView

    OryzaGP_2021_v2

    {"project":"OryzaGP_2021_v2","denotations":[{"id":"T1","span":{"begin":327,"end":330},"obj":"http://identifiers.org/oryzabase.gene/14686"},{"id":"T2","span":{"begin":387,"end":390},"obj":"http://identifiers.org/oryzabase.gene/14686"},{"id":"T3","span":{"begin":753,"end":756},"obj":"http://identifiers.org/oryzabase.gene/14686"},{"id":"T4","span":{"begin":840,"end":845},"obj":"http://identifiers.org/oryzabase.gene/6085"},{"id":"T5","span":{"begin":962,"end":968},"obj":"http://identifiers.org/oryzabase.gene/63"},{"id":"T56500","span":{"begin":327,"end":330},"obj":"http://identifiers.org/rapdb.locus/Os03g0731900"},{"id":"T38887","span":{"begin":387,"end":390},"obj":"http://identifiers.org/rapdb.locus/Os03g0731900"},{"id":"T52256","span":{"begin":753,"end":756},"obj":"http://identifiers.org/rapdb.locus/Os03g0731900"},{"id":"T8592","span":{"begin":840,"end":845},"obj":"http://identifiers.org/rapdb.locus/Os02g0510200"},{"id":"T83050","span":{"begin":962,"end":968},"obj":"http://identifiers.org/rapdb.locus/Os04g0550600"}],"text":"Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice.\nPrecise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE (OsALS) allele modification to generate herbicide-resistant rice (Oryza sativa) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 (OsCCD7) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE (OsHDT) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species."}

    OryzaGP_2022

    {"project":"OryzaGP_2022","denotations":[{"id":"T1","span":{"begin":817,"end":838},"obj":"http://identifiers.org/oryzabase.gene/6085"}],"text":"Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice.\nPrecise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE (OsALS) allele modification to generate herbicide-resistant rice (Oryza sativa) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 (OsCCD7) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE (OsHDT) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species."}

    OryzaGP_2021_FLAIR

    {"project":"OryzaGP_2021_FLAIR","denotations":[{"id":"M_0","span":{"begin":241,"end":268},"obj":"hunflair:NA:Gene"},{"id":"M_1","span":{"begin":513,"end":523},"obj":"hunflair:NA:Gene"},{"id":"M_2","span":{"begin":787,"end":797},"obj":"hunflair:NA:Gene"},{"id":"M_3","span":{"begin":1094,"end":1104},"obj":"hunflair:NA:Gene"},{"id":"M_4","span":{"begin":327,"end":330},"obj":"hunflair:NA:Gene"},{"id":"M_5","span":{"begin":387,"end":390},"obj":"hunflair:NA:Gene"},{"id":"M_6","span":{"begin":753,"end":756},"obj":"hunflair:NA:Gene"},{"id":"M_7","span":{"begin":1055,"end":1074},"obj":"hunflair:NA:Gene"},{"id":"M_8","span":{"begin":905,"end":917},"obj":"hunflair:NA:Species"},{"id":"M_9","span":{"begin":1076,"end":1081},"obj":"hunflair:NA:Gene"},{"id":"M_10","span":{"begin":840,"end":845},"obj":"hunflair:NA:Gene"},{"id":"M_11","span":{"begin":126,"end":130},"obj":"hunflair:NA:Species"},{"id":"M_12","span":{"begin":899,"end":903},"obj":"hunflair:NA:Species"},{"id":"M_13","span":{"begin":927,"end":960},"obj":"hunflair:NA:Gene"},{"id":"M_14","span":{"begin":14,"end":31},"obj":"hunflair:NA:Gene"},{"id":"M_15","span":{"begin":457,"end":474},"obj":"hunflair:NA:Gene"},{"id":"M_16","span":{"begin":14,"end":18},"obj":"hunflair:NA:Gene"},{"id":"M_17","span":{"begin":270,"end":274},"obj":"hunflair:NA:Gene"},{"id":"M_18","span":{"begin":457,"end":461},"obj":"hunflair:NA:Gene"},{"id":"M_19","span":{"begin":513,"end":517},"obj":"hunflair:NA:Gene"},{"id":"M_20","span":{"begin":574,"end":578},"obj":"hunflair:NA:Gene"},{"id":"M_21","span":{"begin":787,"end":791},"obj":"hunflair:NA:Gene"},{"id":"M_22","span":{"begin":1094,"end":1098},"obj":"hunflair:NA:Gene"},{"id":"M_23","span":{"begin":817,"end":838},"obj":"hunflair:NA:Gene"},{"id":"M_24","span":{"begin":962,"end":968},"obj":"hunflair:NA:Gene"},{"id":"M_25","span":{"begin":40,"end":45},"obj":"hunflair:NA:Gene"},{"id":"M_26","span":{"begin":497,"end":502},"obj":"hunflair:NA:Gene"},{"id":"M_27","span":{"begin":518,"end":523},"obj":"hunflair:NA:Gene"},{"id":"M_28","span":{"begin":658,"end":663},"obj":"hunflair:NA:Gene"},{"id":"M_29","span":{"begin":792,"end":797},"obj":"hunflair:NA:Gene"},{"id":"M_30","span":{"begin":1099,"end":1104},"obj":"hunflair:NA:Gene"},{"id":"M_31","span":{"begin":46,"end":54},"obj":"hunflair:NA:Gene"},{"id":"M_32","span":{"begin":503,"end":511},"obj":"hunflair:NA:Gene"},{"id":"M_33","span":{"begin":664,"end":672},"obj":"hunflair:NA:Gene"}],"text":"Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice.\nPrecise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE (OsALS) allele modification to generate herbicide-resistant rice (Oryza sativa) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 (OsCCD7) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE (OsHDT) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species."}

    OryzaGP_2021

    {"project":"OryzaGP_2021","denotations":[{"id":"T1","span":{"begin":327,"end":330},"obj":"http://identifiers.org/oryzabase.gene/14686"},{"id":"T2","span":{"begin":387,"end":390},"obj":"http://identifiers.org/oryzabase.gene/14686"},{"id":"T3","span":{"begin":753,"end":756},"obj":"http://identifiers.org/oryzabase.gene/14686"},{"id":"T4","span":{"begin":817,"end":838},"obj":"http://identifiers.org/oryzabase.gene/6085"},{"id":"T5","span":{"begin":840,"end":845},"obj":"http://identifiers.org/oryzabase.gene/6085"},{"id":"T6","span":{"begin":962,"end":968},"obj":"http://identifiers.org/oryzabase.gene/63"},{"id":"T73649","span":{"begin":327,"end":330},"obj":"http://identifiers.org/ricegap/LOC_Os03g52170"},{"id":"T79880","span":{"begin":387,"end":390},"obj":"http://identifiers.org/ricegap/LOC_Os03g52170"},{"id":"T65361","span":{"begin":753,"end":756},"obj":"http://identifiers.org/ricegap/LOC_Os03g52170"},{"id":"T54929","span":{"begin":817,"end":838},"obj":"http://identifiers.org/ricegap/LOC_Os02g30630"},{"id":"T29862","span":{"begin":840,"end":845},"obj":"http://identifiers.org/ricegap/LOC_Os02g30630"},{"id":"T37374","span":{"begin":962,"end":968},"obj":"http://identifiers.org/ricegap/LOC_Os04g46470"},{"id":"T82325","span":{"begin":327,"end":330},"obj":"http://identifiers.org/rapdb.locus/Os03g0731900"},{"id":"T78095","span":{"begin":387,"end":390},"obj":"http://identifiers.org/rapdb.locus/Os03g0731900"},{"id":"T86923","span":{"begin":753,"end":756},"obj":"http://identifiers.org/rapdb.locus/Os03g0731900"},{"id":"T85074","span":{"begin":817,"end":838},"obj":"http://identifiers.org/rapdb.locus/Os02g0510200"},{"id":"T37778","span":{"begin":840,"end":845},"obj":"http://identifiers.org/rapdb.locus/Os02g0510200"},{"id":"T67909","span":{"begin":962,"end":968},"obj":"http://identifiers.org/rapdb.locus/Os04g0550600"},{"id":"T46669","span":{"begin":327,"end":330},"obj":"http://identifiers.org/uniprot/Q6AVG6"},{"id":"T8614","span":{"begin":387,"end":390},"obj":"http://identifiers.org/uniprot/Q6AVG6"},{"id":"T88501","span":{"begin":753,"end":756},"obj":"http://identifiers.org/uniprot/Q6AVG6"},{"id":"T98074","span":{"begin":817,"end":838},"obj":"http://identifiers.org/uniprot/Q6K2E8"},{"id":"T29551","span":{"begin":840,"end":845},"obj":"http://identifiers.org/uniprot/Q6K2E8"},{"id":"T21403","span":{"begin":962,"end":968},"obj":"http://identifiers.org/uniprot/Q7XU29"},{"id":"M_0","span":{"begin":241,"end":268},"obj":"hunflair:NA:Gene"},{"id":"M_1","span":{"begin":513,"end":523},"obj":"hunflair:NA:Gene"},{"id":"M_2","span":{"begin":787,"end":797},"obj":"hunflair:NA:Gene"},{"id":"M_3","span":{"begin":1094,"end":1104},"obj":"hunflair:NA:Gene"},{"id":"M_4","span":{"begin":327,"end":330},"obj":"hunflair:NA:Gene"},{"id":"M_5","span":{"begin":387,"end":390},"obj":"hunflair:NA:Gene"},{"id":"M_6","span":{"begin":753,"end":756},"obj":"hunflair:NA:Gene"},{"id":"M_7","span":{"begin":1055,"end":1074},"obj":"hunflair:NA:Gene"},{"id":"M_8","span":{"begin":905,"end":917},"obj":"hunflair:NA:Species"},{"id":"M_9","span":{"begin":1076,"end":1081},"obj":"hunflair:NA:Gene"},{"id":"M_10","span":{"begin":840,"end":845},"obj":"hunflair:NA:Gene"},{"id":"M_11","span":{"begin":126,"end":130},"obj":"hunflair:NA:Species"},{"id":"M_12","span":{"begin":899,"end":903},"obj":"hunflair:NA:Species"},{"id":"M_13","span":{"begin":927,"end":960},"obj":"hunflair:NA:Gene"},{"id":"M_14","span":{"begin":14,"end":31},"obj":"hunflair:NA:Gene"},{"id":"M_15","span":{"begin":457,"end":474},"obj":"hunflair:NA:Gene"},{"id":"M_16","span":{"begin":14,"end":18},"obj":"hunflair:NA:Gene"},{"id":"M_17","span":{"begin":270,"end":274},"obj":"hunflair:NA:Gene"},{"id":"M_18","span":{"begin":457,"end":461},"obj":"hunflair:NA:Gene"},{"id":"M_19","span":{"begin":513,"end":517},"obj":"hunflair:NA:Gene"},{"id":"M_20","span":{"begin":574,"end":578},"obj":"hunflair:NA:Gene"},{"id":"M_21","span":{"begin":787,"end":791},"obj":"hunflair:NA:Gene"},{"id":"M_22","span":{"begin":1094,"end":1098},"obj":"hunflair:NA:Gene"},{"id":"M_23","span":{"begin":817,"end":838},"obj":"hunflair:NA:Gene"},{"id":"M_24","span":{"begin":962,"end":968},"obj":"hunflair:NA:Gene"},{"id":"M_25","span":{"begin":40,"end":45},"obj":"hunflair:NA:Gene"},{"id":"M_26","span":{"begin":497,"end":502},"obj":"hunflair:NA:Gene"},{"id":"M_27","span":{"begin":518,"end":523},"obj":"hunflair:NA:Gene"},{"id":"M_28","span":{"begin":658,"end":663},"obj":"hunflair:NA:Gene"},{"id":"M_29","span":{"begin":792,"end":797},"obj":"hunflair:NA:Gene"},{"id":"M_30","span":{"begin":1099,"end":1104},"obj":"hunflair:NA:Gene"},{"id":"M_31","span":{"begin":46,"end":54},"obj":"hunflair:NA:Gene"},{"id":"M_32","span":{"begin":503,"end":511},"obj":"hunflair:NA:Gene"},{"id":"M_33","span":{"begin":664,"end":672},"obj":"hunflair:NA:Gene"}],"text":"Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice.\nPrecise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE (OsALS) allele modification to generate herbicide-resistant rice (Oryza sativa) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 (OsCCD7) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE (OsHDT) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species."}