PubMed:31672727 / 13-22 JSONTXT

An amino-acid mixture can be both rewarding and punishing to larval Drosophilamelanogaster. Amino acids are important nutrients for animals because they are necessary for protein synthesis in particular during growth, as well as for neurotransmission. However, little is known about how animals use past experience to guide their search for amino-acid-rich food. We reasoned that the larvae of Drosophila melanogaster are suitable for investigating this topic because they are the feeding and growth stages in the life cycle of these holometabolous insects. Specifically, we investigated whether experiencing an odour with a 20 amino-acid mixture as a semi-natural tastant during training establishes odour-tastant associative memories. Across a broad concentration range (0.01-20 mmol l-1), such an amino-acid mixture was found to have a rewarding effect, establishing appetitive memory for the odour. To our surprise, however, manipulation of the test conditions revealed that relatively high concentrations of the amino-acid mixture (3.3 mmol l-1 and higher) in addition establish aversive memory for the odour. We then characterized both of these oppositely valenced memories in terms of their dependency on the number of training trials, their temporal stability, their modulation through starvation and the specific changes in locomotion underlying them. Collectively, and in the light of what is known about the neuronal organization of odour-food memory in larval D. melanogaster, our data suggest that these memories are established in parallel. We discuss the similarity of our results to what has been reported for sodium chloride, and the possible neurogenetic bases for concentration-dependent changes in valence when these tastants are used as reinforcers.

projects that have annotations to this span

Unselected / annnotation Selected / annnotation