PubMed:28542200
Annnotations
PubMed_ArguminSci
{"project":"PubMed_ArguminSci","denotations":[{"id":"T1","span":{"begin":52,"end":190},"obj":"DRI_Background"},{"id":"T2","span":{"begin":191,"end":351},"obj":"DRI_Challenge"},{"id":"T3","span":{"begin":352,"end":473},"obj":"DRI_Background"},{"id":"T4","span":{"begin":474,"end":643},"obj":"DRI_Background"},{"id":"T5","span":{"begin":644,"end":800},"obj":"DRI_Background"},{"id":"T6","span":{"begin":801,"end":931},"obj":"DRI_Challenge"},{"id":"T7","span":{"begin":932,"end":1067},"obj":"DRI_Approach"},{"id":"T8","span":{"begin":1068,"end":1179},"obj":"DRI_Approach"},{"id":"T9","span":{"begin":1180,"end":1381},"obj":"DRI_Outcome"}],"text":"Predicting cryptic links in host-parasite networks.\nNetworks are a way to represent interactions among one (e.g., social networks) or more (e.g., plant-pollinator networks) classes of nodes. The ability to predict likely, but unobserved, interactions has generated a great deal of interest, and is sometimes referred to as the link prediction problem. However, most studies of link prediction have focused on social networks, and have assumed a completely censused network. In biological networks, it is unlikely that all interactions are censused, and ignoring incomplete detection of interactions may lead to biased or incorrect conclusions. Previous attempts to predict network interactions have relied on known properties of network structure, making the approach sensitive to observation errors. This is an obvious shortcoming, as networks are dynamic, and sometimes not well sampled, leading to incomplete detection of links. Here, we develop an algorithm to predict missing links based on conditional probability estimation and associated, node-level features. We validate this algorithm on simulated data, and then apply it to a desert small mammal host-parasite network. Our approach achieves high accuracy on simulated and observed data, providing a simple method to accurately predict missing links in networks without relying on prior knowledge about network structure."}
Goldhamster2_Cellosaurus
{"project":"Goldhamster2_Cellosaurus","denotations":[{"id":"T1","span":{"begin":65,"end":66},"obj":"CVCL_6479|Finite_cell_line|Mus musculus"},{"id":"T2","span":{"begin":103,"end":106},"obj":"CVCL_Z424|Spontaneously_immortalized_cell_line|Ostrinia nubilalis"},{"id":"T3","span":{"begin":251,"end":254},"obj":"CVCL_6758|Undefined_cell_line_type|Cricetulus griseus"},{"id":"T4","span":{"begin":251,"end":254},"obj":"CVCL_E689|Transformed_cell_line|Homo sapiens"},{"id":"T5","span":{"begin":265,"end":266},"obj":"CVCL_6479|Finite_cell_line|Mus musculus"},{"id":"T6","span":{"begin":398,"end":405},"obj":"CVCL_7955|Cancer_cell_line|Homo sapiens"},{"id":"T7","span":{"begin":443,"end":444},"obj":"CVCL_6479|Finite_cell_line|Mus musculus"},{"id":"T8","span":{"begin":599,"end":602},"obj":"CVCL_E773|Transformed_cell_line|Homo sapiens"},{"id":"T9","span":{"begin":809,"end":811},"obj":"CVCL_8754|Cancer_cell_line|Homo sapiens"},{"id":"T10","span":{"begin":809,"end":811},"obj":"CVCL_H241|Cancer_cell_line|Homo sapiens"},{"id":"T11","span":{"begin":938,"end":940},"obj":"CVCL_5M23|Cancer_cell_line|Mesocricetus auratus"},{"id":"T12","span":{"begin":949,"end":951},"obj":"CVCL_8754|Cancer_cell_line|Homo sapiens"},{"id":"T13","span":{"begin":949,"end":951},"obj":"CVCL_H241|Cancer_cell_line|Homo sapiens"},{"id":"T14","span":{"begin":1068,"end":1070},"obj":"CVCL_5M23|Cancer_cell_line|Mesocricetus auratus"},{"id":"T15","span":{"begin":1135,"end":1136},"obj":"CVCL_6479|Finite_cell_line|Mus musculus"},{"id":"T16","span":{"begin":1258,"end":1259},"obj":"CVCL_6479|Finite_cell_line|Mus musculus"}],"text":"Predicting cryptic links in host-parasite networks.\nNetworks are a way to represent interactions among one (e.g., social networks) or more (e.g., plant-pollinator networks) classes of nodes. The ability to predict likely, but unobserved, interactions has generated a great deal of interest, and is sometimes referred to as the link prediction problem. However, most studies of link prediction have focused on social networks, and have assumed a completely censused network. In biological networks, it is unlikely that all interactions are censused, and ignoring incomplete detection of interactions may lead to biased or incorrect conclusions. Previous attempts to predict network interactions have relied on known properties of network structure, making the approach sensitive to observation errors. This is an obvious shortcoming, as networks are dynamic, and sometimes not well sampled, leading to incomplete detection of links. Here, we develop an algorithm to predict missing links based on conditional probability estimation and associated, node-level features. We validate this algorithm on simulated data, and then apply it to a desert small mammal host-parasite network. Our approach achieves high accuracy on simulated and observed data, providing a simple method to accurately predict missing links in networks without relying on prior knowledge about network structure."}
GoldHamster
{"project":"GoldHamster","denotations":[{"id":"T1","span":{"begin":11,"end":18},"obj":"SO:0000976"},{"id":"T2","span":{"begin":33,"end":41},"obj":"D010271"},{"id":"T3","span":{"begin":1047,"end":1051},"obj":"UBERON:0003062"},{"id":"T5","span":{"begin":1150,"end":1156},"obj":"D008322"},{"id":"T6","span":{"begin":1162,"end":1170},"obj":"D010271"}],"text":"Predicting cryptic links in host-parasite networks.\nNetworks are a way to represent interactions among one (e.g., social networks) or more (e.g., plant-pollinator networks) classes of nodes. The ability to predict likely, but unobserved, interactions has generated a great deal of interest, and is sometimes referred to as the link prediction problem. However, most studies of link prediction have focused on social networks, and have assumed a completely censused network. In biological networks, it is unlikely that all interactions are censused, and ignoring incomplete detection of interactions may lead to biased or incorrect conclusions. Previous attempts to predict network interactions have relied on known properties of network structure, making the approach sensitive to observation errors. This is an obvious shortcoming, as networks are dynamic, and sometimes not well sampled, leading to incomplete detection of links. Here, we develop an algorithm to predict missing links based on conditional probability estimation and associated, node-level features. We validate this algorithm on simulated data, and then apply it to a desert small mammal host-parasite network. Our approach achieves high accuracy on simulated and observed data, providing a simple method to accurately predict missing links in networks without relying on prior knowledge about network structure."}