PubMed:22134358 / 26-34 JSONTXT

Potential drug targets on insomnia and intervention effects of Jujuboside A through metabolic pathway analysis as revealed by UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition approach. Potential metabolites from the metabolic pathways could be therapeutic targets and useful for the discovery of broad spectrum drugs. UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition methods including PCA, PLS-DA, OPLS-DA and Heatmap were integrated to examine the global metabolic signature of insomnia and intervention effects of Jujuboside A (JuA). Six unique pathways of the insomnia were identified using Ingenuity Pathway Analysis (IPA) software. The VIP-value threshold cutoff of the metabolites was set to 10, above this threshold, were filtered out as potential target biomarkers. Sixteen distinct metabolites were identified from these pathways, and 6 of them can be considered for rational drug design. It was further experimental validation that the changes in metabolic profiling were restored to their baseline values after JuA treatment according to the multivariate data analysis. Potential metabolite network of the insomnia was preliminarily predicted JuA-target interaction networks, and could be further explored for in silico docking studies with suitable drugs. Thus, our method is an efficient procedure for drug target identification through metabolic analysis. It can guide testable predictions, provide insights into drug action mechanisms and enable us to increase research productivity toward metabolomic drug discovery.

projects that have annotations to this span

Unselected / annnotation Selected / annnotation