> top > docs > PubMed:19920187 > spans > 1058-1061

PubMed:19920187 / 1058-1061 JSONTXT

Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Stromal-derived hepatocyte growth factor (HGF) acting through its specific proto-oncogene receptor c-Met has been suggested to play a paracrine role in the regulation of tumor cell migration and invasion. The transition from preinvasive ductal carcinoma in situ (DCIS) to invasive breast carcinoma is marked by infiltration of stromal fibroblasts and the loss of basement membrane. We hypothesized that HGF produced by the infiltrating fibroblasts may alter proteolytic pathways in DCIS cells, and, to study this hypothesis, established three-dimensional reconstituted basement membrane overlay cocultures with two human DCIS cell lines, MCF10.DCIS and SUM102. Both cell lines formed large dysplastic structures in three-dimensional cultures that resembled DCIS in vivo and occasionally developed invasive outgrowths. In coculture with HGF-secreting mammary fibroblasts, the percentage of DCIS structures with invasive outgrowths was increased. Activation of c-Met with conditioned medium from HGF-secreting fibroblasts or with recombinant HGF increased the percentage of DCIS structures with invasive outgrowths, their degradation of collagen IV, and their secretion of urokinase-type plasminogen activator and its receptor. In agreement with the in vitro findings, coinjection with HGF-secreting fibroblasts increased invasiveness of MCF10.DCIS xenografts in severe combined immunodeficient mice. Our study shows that paracrine HGF/c-Met signaling between fibroblasts and preinvasive DCIS cells enhances the transition to invasive carcinomas and suggests that three-dimensional cocultures are appropriate models for testing therapeutics that target tumor microenvironment-enhanced invasiveness.

projects that have annotations to this span

Unselected / annnotation Selected / annnotation
c_corpus (10)